Score
2010

Name:

Section (circle one): 1021 Team (circle one): a b c d e

SM221 – Sample Test #3– Fall 2004

Part 1: Multiple Choice (50%). For each question, circle the letter for he best answer.

1. The volume under the paraboloid $z = x^2 + 2y^2$ and above the region in the xy-plane bounded by the x-axis and y-axis, and the line x+y=1 is:

(a) $\frac{1}{4}$ (b) $\frac{5}{12}$ (c) $\frac{7}{12}$ (d) $\frac{3}{4}$ (e) 1

2. The volume above the paraboloid $z = x^2 + y^2$ and below the paraboloid $z = 1 - x^2 - y^2$ is:

- (a) 0

(b) $\frac{3}{16}\pi$ (c) $\frac{1}{4}\pi$ (d) $\frac{2}{3}\pi$ (e) $\frac{2\sqrt{2}}{3}\pi$

3. The iterated integral $\int_{-2}^{0} \int_{0}^{-x} f(x, y) dy dx$ must be equal to:

- (a) $\int_{0}^{-x} \int_{0}^{0} f(x, y) dx dy$ (b) $\int_{0}^{2} \int_{-y}^{-2} f(x, y) dx dy$ (c) $\int_{-2}^{0} \int_{0}^{-y} f(x, y) dx dy$

- (d) $\int_{0}^{2} \int_{-2}^{-y} f(x, y) dx dy$ (e) $\int_{-2}^{0} \int_{-v}^{0} f(x, y) dx dy$

4. The surface area of the portion of the plane z=2x+3y which lies above the rectangle $0 \le x \le 2$ and $0 \le y \le 1$ is:

- (a) $2\sqrt{6}$
- (b) $2\sqrt{14}$
- (c) 9
- (d) 12

(e) 28

 $\overline{5. \int_{0}^{\pi/2} \int_{0}^{\sin x} y \, dy dx} =$

- (a) $\frac{1}{2}\sin^2 x$ (b) π (c) $-\frac{\pi}{2}$ (d) $\frac{\pi}{8}$

(e) 0

6. The integral $f(x, y) = x^2 + y$ over the disk $x^2 + y^2 \le 1$ is:

- (a) $\int_0^1 \int_0^1 (x^2 + y) dx dy$ (b) $4 \int_0^1 \int_0^{\sqrt{1-y^2}} (x^2 + y) dx dy$ (c) $\int_0^1 \int_0^{2\pi} (r^2 \cos^2 \theta + r \sin \theta) r d\theta dr$
- (d) 0

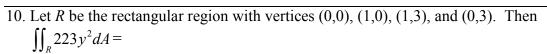
(e) $\int_{0}^{1} \int_{0}^{2\pi} (\cos^{2}\theta + \sin\theta) d\theta dr$

7. Let R be the region of a 3-space bounded by the xy-plane, the surface $x^2 + y^2 = 1$, and the plane y+z=1. Then $\iiint_R z dV =$

- (a) $\int_{-1}^{1} \int_{-1}^{1} z \, dx \, dy \, dz$ (b) $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{0}^{1-y} z \, dz \, dy \, dx$ (c) $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} (1-y) \, dy \, dx$

- (d) $\int_0^1 \int_1^1 \int_1^{1-y} z \, dx \, dy \, dz$ (e) $\int_0^1 \int_0^{2\pi} (1-r\sin\theta) r \, dr \, d\theta$

8. If we reverse the order of integration in the integral $\int_0^1 \int_0^{x^2} \sin(y) dy dx$, we obtain: (a) $\int_0^1 \int_{\sqrt{y}}^1 \sin(y) dx dy$ (b) $\int_0^1 \int_{\sqrt{y}}^1 \sin^{-1}(x) dx dy$ (c) $\int_0^1 \int_{y^2}^0 \sin(y) dx dy$ (d) $\int_0^1 \int_0^{y^2} \sin(y) dx dy$ (e) $\int_0^1 \int_x^1 \cos(y) dx dy$
9. When we convert the iterated integral $\int_0^3 \int_0^{\sqrt{9-x^2}} e^{x^2+y^2} dy dx$ from rectangular to polar
coordinates, we obtain: (a) $\int_{0}^{\pi/2} \int_{0}^{3} e^{r^2} dr d\theta$ (b) $\int_{0}^{2\pi} \int_{0}^{3} e^{r^2} dr d\theta$ (c) $\int_{0}^{\pi/2} \int_{0}^{3} re^{r^2} dr d\theta$ (d) $\int_{0}^{3} \int_{0}^{\sqrt{9-(r\cos\theta)^2}} e^{r^2} r dr d\theta$
(e) $\int_0^3 \int_0^{\sqrt{9-(r\cos\theta)^2}} e^{r^2} dr d\theta$



- (a) 0
- (b) 3
- (c) 223
- (d) 669
- (e) 2007

11. The region of integration for the iterated integral
$$\int_0^4 \int_0^{6-x} (x^2 + y^2) dy dx$$
 is a:

- (a) quarter-circular disk
- (b) circular disk
- (c) trapezoid (d) right triangle
- (e) rectangle

12. The iterated integral
$$\int_0^1 \int_0^x f(x, y) dy dx$$
 is equivalent to:

- (a) $\int_{0}^{1} \int_{y}^{1} f(x, y) dxdy$ (b) $\int_{0}^{1} \int_{1}^{y} f(x, y) dxdy$ (c) $\int_{0}^{1} \int_{0}^{1} f(x, y) dxdy$ (d) $\int_{0}^{1} \int_{0}^{y} f(x, y) dxdy$

(e)
$$\int_0^{\pi/4} \int_0^1 f(r\cos\theta, r\sin\theta) r dr d\theta$$

- 13. Evaluate $\iiint_E (x^2 + y^2 + z^2) dV$ where E is the solid unit sphere centered at the origin.

- (a) $\frac{2}{5}\pi$ (b) $\frac{2}{3}\pi$ (c) $\frac{4}{5}\pi$ (d) π (e) $\frac{4}{3}\pi$

14. A solid is bounded above by the surface
$$z = x^2 + y^2$$
 and below by the region in the xy-plane bounded by $y=0$ and $y=1-x^2$. If the density is given by $\rho(x,y,z)=z$, the mass of the solid is best computed with:

- (a) A double integral in rectangular coordinates.
- (b) A double integral in polar coordinates.
- (c) A triple integral in rectangular coordinates.
- (d) A triple integral in cylindrical coordinates.
- (e) A triple integral in spherical coordinates.
- 15. The volume of the solid below the surface $z = 16 x^2 y^2$ and above the xy-plane is:
- (a) $-\frac{128}{2}\pi$
- (b) $\frac{128}{3}\pi$ (c) $\frac{256}{3}\pi$
- (d) 128π

Name:

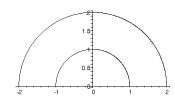
Part 2: Free Response (50 %). The remaining problems are not multiple choice. Answer them in the space below the problem. Show the details of your work and clearly indicate your answers. (Challenge Factor: *Easy, ***Challenging, *****Very Challenging)

16. (****) For the double integral $\int_0^1 \int_x^{1+3x} xy \, dy dx$,

- (b) Make a careful sketch of the region of integration, labeling the coordinates of all corners.
- (c) Rewrite the integral for the opposite order of the variables.
- 17. (**) Let *R* be the portion of the *xy*-plane with $1 \le x^2 + y^2 \le 9$.
 - (b) Sketch *R*, and use your sketch to explain why it is sensible to set up an integral over *R* in a coordinate system that is not Cartesian.
 - (c) Compute $\iint_R e^{x^2+y^2} dA$.

18. (***) For the triple integral $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{0}^{\sqrt{4-x^2-y^2}} (x^2 + y^2 + z^2) dz dy dx$

- (a) Draw the region of integration.
- (b) Rewrite the integral in cylindrical coordinates.
- (c) Rewrite the integral in spherical coordinates.
- 19. (**) Determine the volume of a tetrahedron bounded the planes x=0, y=0, z=0 and 3x+2y+z=6.
- $\overline{20. (**)}$ Find $\iint_D \sqrt{x^2 + y^2} dA$ where *D* is the region shown:



- 21. (***) Find the volume of the solid bounded above by the plane z=x+y and below by the region in the xy plane bounded by y=0 and $y=2x-x^2$.
- 22. (***) Find the mass of a solid cylinder of radius 5 and height 3, with its base sitting on the xy-plane with the center of the base at the origin if the density is given by $\rho(x, y, z) = x^2 + y^2$.

- 23. (***) A lamina (a two dimensional object) occupies the region in the *xy*-plane bounded by the curves y=x and $y=x^2$. Find the center of mass of the lamina if the density at the point (x,y) is $\rho(x,y) = 2y$.
- 24. (***) Find the mass of the tetrahedron bound by the coordinate planes and the plane 3x+2y+z=6, if the density at the point (x,y,z) is $\rho(x,y,z)=x^2+z$. Set up the integral, then solve with your calculator!!!
- 25. (*****) E is the solid bounded below by the cone $z^2 = x^2 + y^2$ and bounded above by the sphere $x^2 + y^2 + z^2 = 8$. The density at the point (x,y,z) is $\rho(x,y,z) = z$.
 - (b) Set up an iterated integral in cylindrical coordinates which gives the mass of E.
 - (c) Set up an iterated integral in spherical coordinates which gives the mass of E.
 - (d) Evaluate at least one of the integrals.

