Part I – No calculators allowed.

•

1. Derive the formula for the element of area $r dr d\theta$ for double integrals in polar coordinates.

We can derive this formula using the method of 16.7, Equation 2 on p. 1111. Let S be the xy-plane, parametrized as

 $\mathbf{r}(r,\theta) = \langle r\cos\theta, r\sin\theta, 0 \rangle$, where $r \ge 0$. The element of area for S is given by $dS = |\mathbf{r}_r \times \mathbf{r}_\theta| dr d\theta$. Calculate \mathbf{r}_r and \mathbf{r}_θ and show that $|\mathbf{r}_r \times \mathbf{r}_\theta| = r$. Part II – Calculators are allowed for this part of the test.

2. Identify the surface given by each parametrization.

a. $\vec{r}(x,y) = \langle x, y, 3 - x - y \rangle$	Plane
b. $\vec{r}(u,v) = \langle u, v, 3u^2 + 3v^2 \rangle$	Paraboloid $z = 3x^2 + 3y^2$
c. $\vec{r}(\theta, z) = \langle 3\cos\theta, 3\sin\theta, z \rangle$	Cylinder of radius 3, centered on the z-axis
d. $\vec{r}(\varphi, \theta) = \langle 3\sin\varphi\cos\theta, 3\sin\varphi\rangle$	$n \theta$, $3 \cos \varphi$ Sphere of radius 3 centered at the origin
e. $\vec{r}(r,\theta) = \langle 3r \cos \theta, 3r \sin \theta, 3r \rangle$	Cone $x^2 + y^2 = z^2$

3. Use the Divergence Theorem to find the flux $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where *S* is the surface of the solid bounded by the cylinder $y^2 + z^2 = 4$ and the planes x = 0 and x = 3, with the outward orientation, and $\mathbf{F}(x, y, z) = y\mathbf{i} + x\mathbf{j} + 5z\mathbf{k}$.

Answer: 60π

4. Use Stokes' Theorem to find $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = 3y\mathbf{i} + 5x\mathbf{j} + 4y\mathbf{k}$ and S is the hemisphere $x^2 + y^2 + z^2 = 4$, $z \ge 0$, with the upward orientation. Be sure to show clearly how Stokes' Theorem was used.

Answer: 8π

5. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = 4x\mathbf{i} + z\mathbf{j} + 5\mathbf{k}$ and S is the cylinder given by the parametrization $\mathbf{r}(u, v) = \langle 2 \cos v, u, 2 \sin v \rangle$, for $0 \le u \le 3$ and $0 \le v \le 2\pi$ with the outward orientation.

Answer: 48π

6. Evaluate the surface integral $\iint_S \sqrt{1+4y} \, dS$, where S is the part of the paraboloid $y = x^2 + z^2$ such that $x^2 + z^2 \le 1$.

Answer: 3π