1. What is the DOMAIN of the function given by: \(h(x) = \frac{1}{\sqrt{4 - x^2}} \)
 a) \(x \neq 2 \) b) all reals c) \([-2, 2]\) d) \((-2, 2]\) e) \((0, \infty)\)
d since can’t take square root of negative and can’t divide by 0

2. Which of the following equations has the graph of an EVEN function?
 a) \(y = \sin(x) \) b) \(y = \cos(x) \) c) \(y = e^x \) d) \(y = \ln(x) \) e) \(y = 1/x \)
b since \(\cos(-x) = \cos(x) \) (also, graph is symmetric across the \(y \)-axis).

3. For \(f \) the function graphed and \(g(x) = e^x \), find the value of the composition at 1, namely, \((f \circ g)(1) = f(g(1)) = \)
 a) 0 b) 1 c) 2 d) 3 e) \(e^x \)
d since \(e \approx 2.7 \), \(g(1) = e \) is between 2 and 3 and from the graph \((f \circ g)(1) = f(e) = 3 \).

4. If \(\lim_{x \to a} f(x) = 3 \) and \(\lim_{x \to a} g(x) = 0 \) and \(\lim_{x \to a} h(x) = 1 \), then
 \(\lim_{x \to a} (f(x)g(x) + h(x)) = \)
 a) 0 b) 1 c) 2 d) 3 e) not enough information to evaluate
 since
 \begin{align*}
 \lim_{x \to a} (f(x)g(x) + h(x)) &= \lim_{x \to a} (f(x)) \lim_{x \to a} (g(x)) + \lim_{x \to a} (h(x)) \\
 &= 3 \cdot 0 + 1 = 1
 \end{align*}
5. Based on the given graph of \(g \), the left-hand limit as \(x \) approaches 1 from the left hand side is given by
\[
\lim_{x \to 1^-} g(x) =
\]
\[
(\text{0) 1 2 3 e) does not exist}
\]
\[
\text{since for } x \text{ close to, but less than, 1, } g(x) \text{ is close to 3.}
\]

6. Which equation is of a horizontal asymptote to the graph of
\[
y = \frac{2x^2 + 1}{x^2 - 4x + 3}
\]
\[
a) x = 1 \quad b) x = 3 \quad c) y = 0 \quad d) y = 1 \quad e) y = 2
\]
\[
\text{since } \lim_{x \to \pm \infty} \frac{2x^2 + 1}{x^2 - 4x + 3} = \lim_{x \to \pm \infty} \frac{2 + \left(\frac{1}{x}\right)}{1 - 4\left(\frac{1}{x}\right) + 3\left(\frac{1}{x^2}\right)} = 2
\]

7. Suppose that the table shows the percentage \(P \) of the population in Europe that uses cell phones in each year.

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>52</td>
<td>61</td>
<td>73</td>
<td>82</td>
</tr>
</tbody>
</table>

What is the average rate of cell phone growth from 2000 to 2003? (Units are percent/yr.)
\[
a) 10 \quad b) 15 \quad c) 30 \quad d) 82 \quad e) none of these
\]
\[
\text{since average rate} = \frac{\text{change of } P}{\text{change of Year}} = \frac{82 - 52}{2003 - 2000} = 10
\]

8. Which is an equation of the tangent line to \(y = x^2 - 2x^3 \) at \((-1,3)\)?
\[
a) y - 3 = (2x - 6x^2)(x + 1) \quad b) y - 3 = -8(x + 1) \quad c) y = -8x \quad d) y + 1 = -8(x - 3) \quad e) none of these
\]
\[
\text{since } y' = 2x - 6x^2, \text{ so at } (-1,3) \text{ slope is given by } m = -2 - 6 = -8. \text{ Point-slope form of the line gives b.}
\]

9. If \(f(4) = 2 \) and \(f'(4) = 3 \) and \(g(x) = \sqrt{x} \), then the derivative of the product at 4 is \((fg)'(4) = \)
\[
a) 4 \quad b) 6 \quad c) 8 \quad d) \frac{11}{2} \quad e) \frac{13}{2}
\]
\[
\text{since } g'(x) = 1/(2\sqrt{x}) \text{ and by the product rule,}
\]
\[
(fg)'(4) = f'(4)g(4) + f(4)g'(4) = 3 \cdot 2 + 2 \cdot \left(\frac{1}{4}\right) = 6 + \frac{1}{2} = \frac{13}{2}
\]

10. Evaluate: \(\frac{d}{dx} \sec(2x) = \)
\[
a) \tan^2(2x) \quad b) 2\tan^2(2x) \quad c) \sec(2x) \tan(2x) \quad d) 2 \sec(2x) \tan(2x) \quad e) 4 \sec(2x) \tan(2x)
\]
\[
\text{since by the chain rule we have } \frac{d}{dx} \sec(2x) = 2 \sec(2x) \tan(2x)
\]
11. Differentiating $x/y = \sin(x - y)$ implicitly with respect to x gives:

a) $\frac{3y-xy'}{y^2} = (1-y')\cos(x-y)$

b) $\frac{y-xy'}{y^2} = y'\cos(x-y)$

c) $\frac{1}{y'} = (1-y')\cos(x-y)$

d) $\frac{y-xy'}{y^2} = \cos(x-y)$

e) $\frac{1}{y'} = \cos(x-y)$

b) by using the quotient rule on the left and the chain rule on the right

12. A spherical balloon is being inflated. Find the rate of increase of the surface area ($S = 4\pi r^2$) with respect to time when the radius r is 3cm if $\frac{dr}{dt} = 2$cm/s.

a) 6πcm2/s b) 8πcm2/s c) 24πcm2/s d) 48πcm2/s e) 72πcm2/s

a) since by the chain rule we have the rate of increase with respect to time is $\frac{dS}{dt} = 8\pi r \frac{dr}{dt}$ and so for $r = 3$ and $\frac{dr}{dt} = 2$, $\frac{dS}{dt} = 48\pi$. The units are as given.

13. The linearization of $\ln(x)$ at $a = 1$ is

L(x) = x b) $L(x) = \frac{1}{x}(x-1)$ c) $L(x) = x - 1$ d) $L(x) = \frac{1}{x} - 1$ e) undefined

c) since, in general, linearization is given by $L(x) = f(a) + f'(a)(x-a)$. Here $f(x) = \ln(x)$, so $f(a) = f(1) = \ln(1) = 0$ and $f'(a) = \frac{1}{a} = 1$. This gives us $L(x) = x - 1$.

14. On the interval $[-1,2]$ the absolute maximum of $h(x) = x^2$ is:

a) -1 b) 0 c) 1 d) 2 e) 4

e) since the absolute maximum will occur either at a critical number (0, since $h'(x) = 2x = 0$ only for $x = 0$) or at one of the endpoints. Checking at $-1,0,2$, the maximum value is $h(2) = 4$.

15. For $f(x) = e^{-2x}$ on the interval $[0,2]$ the value of c that satisfies the conclusion of the Mean Value Theorem is closest to

a) 0 b) 0.7 c) 1.0 d) 1.3 e) 2.0

e) since we’re looking for c such that $f'(c) = \frac{f(b) - f(a)}{b-a}$, in other words

$-2e^{-2c} = \frac{e^{-4} - e^{0}}{2-0} \approx -0.49084$, so $e^{-2c} \approx 0.24542$, and taking logs, $-2c \approx -1.40458$, so $c \approx 0.7$.

16. Suppose that f is continuous everywhere and that $f'(x) = 0$ for $x = 0,3$, and 5. Further, suppose $f'(x) > 0$ for $x < 0,3 < x < 5$, and $5 < x$. Also, $f'(x) < 0$ for $0 < x < 3$. Then f has a local minimum at $x =$

a) 0 b) 3 c) 4 d) 5 e) not enough information

e) since the local minimum will occur at the critical number 3 because f decreases on the left of 3 and increases on the right of 3.
17. Suppose \(\lim_{x \to 0} f(x) = 0 \) and \(\lim_{x \to 0} f'(x) = 3 \) and \(g(x) = \sin(2x) \). Then \(\lim_{x \to 0} \frac{f(x)}{g(x)} = \)
a) 0 b) \(\frac{1}{2} \) c) 1 d) \(\frac{3}{2} \) e) 3

Since \(\lim_{x \to 0} g(x) = 0 \) we can apply L’Hospital’s rule, and since \(g'(x) = 2\cos(2x) \) and so \(\lim_{x \to 0} g'(x) = 2 \) we have \(\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \frac{3}{2} \)

CALCULUS I FINAL EXAMINATION 18 DEC 2009

Page 4 of 10

18. Find the most general expression for function \(h \) if the second derivative is given by \(h''(x) = e^x \):

a) \(h(x) = e^x \) b) \(h(x) = -e^{-x} \) c) \(h(x) = Ce^x + D \)
d) \(h(x) = e^x + Cx + C \) e) \(h(x) = e^x + Cx + D \)

Since \(h'(x) = e^x + C \) and \(h(x) = e^x + Cx + D \). The two added constants need not be the same.

19. The velocity of a plane traveling in a straight line is given at 12 second intervals:

<table>
<thead>
<tr>
<th>(t) (s)</th>
<th>0</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v) (m/s)</td>
<td>100</td>
<td>110</td>
<td>115</td>
<td>115</td>
<td>120</td>
<td>125</td>
</tr>
</tbody>
</table>

Estimating the distance traveled during this minute of time using the velocities at the beginning of the time intervals gives:

a) 6720 m b) 6795 m c) 6870 m d) 6945 m e) 7020 m

Since \(\Delta t = 12, \text{dist} = 100\Delta t + 110\Delta t + 115\Delta t + 115\Delta t + 120\Delta t = 560\Delta t = 6720 \).

Correct units of distance here are meters.

20. For \(f \) as sketched, and \(g \) defined by \(g(x) = \int_0^x f(t) \, dt \)

what is \(g(3) \)?

a) 2 b) 2.5 c) 3 d) 3.5 e) 4

Since \(g(3) = \int_0^3 f(t) \, dt = \int_0^1 f(t) \, dt + \int_1^3 f(t) \, dt \) equals the sum of the area of two triangles, with height 1 and base 1 (area=0.5) and with height 2 and base 2 (area=2) for total area 2.5
21. a) Find the exponential function
\[g(x) = C \alpha^x \] with the given graph.

b) Give an equation for the tangent line to the graph of \(g \) at \(x = 0 \).

\[g(0) = 3 \text{ and from the equation } g(0) = C \alpha^0 = C \text{ we have } C = 3. \]

\[g(1) = 1 \text{ and from the equation } g(1) = C \alpha^1 = 3\alpha, \alpha = 1/3. \text{ So } g(x) = 3 \left(\frac{1}{3} \right)^x. \]

b) To differentiate \(y = 3 \left(\frac{1}{3} \right)^x \) we first take logs to get \(\ln(y) = \ln(3) + x \ln\left(\frac{1}{3} \right) \). Differentiating gives \(\frac{1}{y} y' = \ln\left(\frac{1}{3} \right) \) so \(y' = y \ln\left(\frac{1}{3} \right) \).

At the point \((0,3)\) the graph has a tangent line with slope \(3 \ln\left(\frac{1}{3} \right) = -3 \ln(3) \). So the slope intercept equation of the tangent line is \(y = -3 \ln(3)x + 3 \). (Or, less accurately, \(y = -3.2958x + 3 \)). Picture:

22. Find a formula for \(f^{-1}(x) \), the inverse of the function given by \(f(x) = \sqrt{6 - 2x} \). What is the domain of \(f^{-1} \)?

Solving \(y = \sqrt{6 - 2x} \) for \(x \) we have \(y^2 = 6 - 2x \) and so \(2x = 6 - y^2 \) and \(x = 3 - y^2/2 \). So the formula is \(f^{-1}(x) = 3 - x^2/2 \). Since the domain of \(f \) is \((-\infty, 3]\) and range is \([0, \infty)\), these swap for \(f^{-1} \) which has domain \([0, \infty)\). Both are sketched below:
23. Sketch the graph of a single function \(h \) that satisfies:
\[
\lim_{x \to -\infty} h(x) = -1, \quad \lim_{x \to -2} h(x) = 1, \quad \lim_{x \to 2^+} h(x) = -\infty, \\
\lim_{x \to -1} h(x) = 0, \quad \lim_{x \to 0} h(x) = -\infty, \quad \lim_{x \to 2} h(x) = \infty, \quad \lim_{x \to \infty} h(x) = 2
\]

24. Showing all steps, use logarithmic differentiation to find \(\frac{dy}{dx} \) for
\[
y = (\tan(x))^{1/x}
\]

Taking the logarithm we get \(\ln(y) = \frac{1}{x} \ln(\tan(x)) \), so differentiating using the chain and product rules:
\[
\frac{1}{y} y' = -\frac{1}{x^2} \ln(\tan(x)) + \frac{1}{x} \frac{\sec^2(x)}{\tan(x)}
\]
which can be rewritten as
\[
\frac{dy}{dx} = \frac{1}{x^2} \left(\frac{x}{\sin(x) \cos(x)} - \ln(\tan(x)) \right) (\tan(x))^{1/x}
\]
25. At noon ship A is 60 km north of location X and sailing north at 10 km/hr. At the same time ship B is 80 km east of X and sailing WEST at 13 km/hr. At what rate is the distance between the ships changing?

Using the figure, we have \(\frac{dy}{dt} = 10 \), \(\frac{dx}{dt} = -13 \), and \(z^2 = x^2 + y^2 \). So differentiating with respect to \(t \),

\[
2z \frac{dz}{dt} = 2x \frac{dx}{dt} + 2y \frac{dy}{dt}.
\]

At noon, \(x = 60 \) and \(y = 80 \), so \(z = \sqrt{60^2 + 80^2} = 100 \).

Dividing by 2 and substituting, we get

\[
100 \frac{dz}{dt} = 60(10) + 80(-13) = -440
\]

so \(\frac{dz}{dt} = -4.4 \) and they are getting closer at a rate of 4.4 km/hr.

26. Find the point on the curve with equation \(y = \sqrt{x} \) that is closest to the point \((2,0)\). [Hint. You might try minimizing \(d^2 \), the square of the distance from a point of the curve to \((2,0)\).]

Using the distance formula, for a point \((x, y)\) on the curve

\[
d^2 = (x - 2)^2 + (y - 0)^2 = (x^2 - 4x + 4) + x = x^2 - 3x + 4.
\]

So to minimize we set the derivative to 0: \(2x - 3 = 0 \), giving us \(x = 3/2 \) and so \(y = \sqrt{3/2} \). Since the second derivative is 2 which is positive, the point \((3/2, \sqrt{3/2})\) is where a global minimum occurs and so is the closest point. (The minimal distance is \(\sqrt{7/2} \). Below is a sketch of the curve and the circle centered at \((2,0)\) with radius \(\sqrt{7/2} \).)
Page 8 is BLANK and can be used as SCRATCH PAPER
27. Use the Chain Rule and the Product Rule to give a proof of the Quotient Rule. [Hint: Write \(\frac{f(x)}{g(x)} = f(x)[g(x)]^{-1} \).]

\[
\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = f'(x)[g(x)]^{-1} - f(x)[g(x)]^{-2}g'(x) = f'(x)[g(x)]^{-1} + f(x)\frac{d}{dx}\left([g(x)]^{-1} \right)
\]

by the definition of negative exponents

by the Product Rule

by the Chain Rule

by algebra

by algebra (getting common denominator)

by subtraction

28. Find the derivative \(r'(t) \) if \(r(t) = \ln(t) + \tan^{-1}(2t) + 3t \sin(t) + \cos(3t) - 2e^{-t}. \)

\[
r'(t) = \frac{1}{t} + \frac{2}{1 + 4t^2} + 3 \sin(t) + 3t \cos(t) - 3 \sin(3t) + 2e^{-t}
\]
29. Sketch the graph of \(y = x^4 - 4x^3 \) and give:

a) Open intervals of increase

b) Local minimum and local maximum values

c) Open intervals of upward concavity

d) Points of inflection

We have \(y' = 4x^3 - 12x^2 = 4x^2(x-3) \) and \(y'' = 12x^2 - 24x = 12x(x-2) \). These give us the following sign charts for \(y' \) and \(y'' \):

\[
\begin{array}{cccc|c|c}
 x & 0 & 1 & 2 & 3 & - & 0 & + \\
 y' & - & - & - & 0 & + & & \\
 y'' & 0 & - & 0 & + & & \\
\end{array}
\]

So we have:

a) Open intervals of increase: where \(f' > 0 \): \((3, \infty)\)

b) Local minimum and local maximum values: min at 3 of \(3^4 - 4 \cdot 3^3 = -27 \), no local max

c) Open intervals of upward concavity: where \(f'' > 0 \): \((-\infty, 0) \) and \((2, \infty)\)

d) Points of inflection: where concavity changes: \((0,0)\) and \((2, -16)\)

Also, note that \(x^4 - 4x^3 = x^3(x-4) \) so the \(x \) intercepts are at 0 and 4.

30. Find the general indefinite integral: \(\int (x^2 + x^{-2} + \sin(x)) \, dx \)

\[
\frac{1}{3}x^3 - x^{-1} - \cos(x) + C
\]