Part II Long Answer CALCULATOR ALLOWED

Instructions: A calculator is allowed for Part II of this exam. Write your work directly on this exam. Clearly indicate the places you use a calculator.

1. This problem deals with the point $P = (1, 2, 12)$ and the plane

$$2x + 2y + z = 36.$$

(a) Find a unit vector perpendicular to the plane.

(b) Give parametric equations for the line through P perpendicular to the plane.

(c) Find the point where the line you found in (a) intersects the plane.

(d) Find the distance between the point P and the plane.
2. The plane

$$2x + 5y + z = 10$$

intersects the x-, y-, and z-axes at the points A, B, and $C = (0, 0, 10)$, respectively. The figure is not to scale.

(a) Insert the coordinates for points A and B in the figure.

(b) Compute $\vec{CA} \cdot \vec{CB}$.

(c) How big is $\angle ACB$ (in degrees or radians)?

(d) Compute $\vec{CA} \times \vec{CB}$.

(e) Find the area of $\triangle ABC$.
3. The velocity of a particle at time t is

$$\mathbf{v}(t) = \mathbf{r}'(t) = \langle 2t + 1, 0, 3t^2 \rangle,$$

and its position at time $t = 2$ is $\mathbf{r}(2) = \langle 6, 7, 1 \rangle$. Length is measured in meters, and time is measured in minutes.

(a) Find the speed of the particle at time $t = 2$.

(b) Find parametric equations of the tangent line to the particle's trajectory at $t = 2$.

(c) Find the position $\mathbf{r}(t)$ of the particle at time t.
4. A projectile is fired from a cliff of height 50 m
with initial speed 40 m/sec at an angle
30° (π/6 radians) above horizontal.
The position vector for the projectile is
\[\mathbf{r}(t) = \langle x(t), y(t) \rangle, \]
as shown. The acceleration due to gravity is
9.8 m/sec^2 directed downward.
Ignore air resistance.
(a) Use the given numbers to find the position vector \(\mathbf{r}(t) \).

(b) Compute the projectile’s time of impact \(t^* \).

(c) i. Compute \(x(t^*) \).

ii. Explain what the number you computed means in words. You can an-
notate and refer to the diagram.

(d) A calculator gives
\[\int_0^{t^*} |\mathbf{r}'(t)| \, dt = \int_0^{t^*} \sqrt{(x'(t))^2 + (y'(t))^2} \, dt = 228. \]
What does this number mean in the context of this problem?
5. The function \(P = P(r, c) \) gives the monthly profit (in thousands of dollars) earned by a small manufacturer that places \(r \) hours of ads on the radio, and pays a supplier \(c \) dollars for a key component in each product. The table gives some values of \(P \).

\[
\begin{array}{c|ccc}
P(r, c) & c = 50 & c = 60 & c = 70 \\
\hline
r = 1 & 19 & 15 & 11 \\
r = 3 & 23 & 20 & 17 \\
r = 5 & 27 & 25 & 23 \\
\end{array}
\]

(a) Explain in words understandable by a 9th grader what the following assertions mean. Do not use words technical words such as “partial” or “derivative.” Include units.

i. \(P(3, 60) = 20 \)

ii. \(P_c(3, 60) = -0.3 \)

(b) Use the table of values to estimate the partial derivative \(P_r(3, 60) \).

(c) Use a linear approximation (and the values from (a) and (b)) to estimate \(P(4, 62) \).
6. The figure shows the contour diagram for a smooth function \(f(x, y) \) with two points labeled \(P \) and \(Q \). For each expression
(i) state the sign (positive, negative, or zero)
(ii) explain your answer.

(a) \(f(Q) - f(P) \)

(b) \(f_x(P) \)

(c) \(f_{xx}(P) \)

(d) \(f_{xx}(Q)f_{yy}(Q) - [f_{xy}(Q)]^2 \)
7. Throughout this problem we consider the function

\[f(x, y) = y^3 + 3x^2y - 6x^2 - 6y^2 + 2. \]

You can verify that

\[f_x = 6xy - 12x = 6x(y - 2) \quad \text{and} \quad f_{xx} = 6y - 12. \]

The function \(f \) has four critical points.

(a) One critical point is \((0,0)\). Classify it as a relative maximum, relative minimum, or saddle point.

(b) Find and classify the other three critical points.
8. A farmer will install fences to form four adjacent rectangular pens next to a barn, as shown. Each pen has dimensions x feet by y feet. No fencing is required along the barn.

In this problem you will use Lagrange multipliers to determine maximum total area the farmer can enclose with a total of 120 feet of fence.

(a) Express the total area $A(x, y)$ of all the pens in terms of x and y.

(b) Give the constraint in the form $g(x, y) = k$, where k is a constant.

(c) Use Lagrange multipliers to find the maximum total area.
9. Let R be the region in the first quadrant that is inside the circle $x^2 + y^2 = 10^2$ of radius 10 and above the line $y = x$.

(a) Give the coordinates of the intersection point P in the indicated coordinate systems.

 i. polar: $(r, \theta) =$

 ii. rectangular (Cartesian)

 $(x, y) =$

(b) Let $f(x, y) = x\sqrt{x^2 + y^2}$ and write

\[
\int \int_R f(x, y) \, dA
\]

as an iterated double integral in the indicated coordinate systems.

i. rectangular (Cartesian)

ii. polar

(c) Find the exact value of the double integral $(*)$ in part (b).
10. Let E be the solid region inside the sphere $x^2 + y^2 + z^2 = 4$ and below the xy-plane.

(a) Sketch the solid E using the given axes.

(b) Let $f(x, y, z) = (x^2 + y^2 + z^2)^3$ and write

$$\int \int \int_E f(x, y, z) \, dV$$

as an iterated triple integral in the indicated coordinate systems.

i. rectangular (Cartesian)

ii. spherical

(c) Find the exact value of the triple integral (*) in part (b).