SM261 FINAL EXAMINATION 14 DECEMBER 2006

PART ONE: NO CALCULATORS When you are finished with PART ONE hand it in and begin work on PART TWO.

1. Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 2 \end{bmatrix}$$
 and let $B = \begin{bmatrix} 1 & 2 \\ 1 & 4 \\ 1 & 7 \end{bmatrix}$.

- a. Calculate AB.
- b. Calculate $B^T A^T$.

2. Let
$$C = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 4 \\ 1 & 1 & 2 \end{bmatrix}$$
. Find C^{-1} .

3. Find all solutions to the following system of equations. Write your solutions in vector form.

4. Identify the redundant vectors among the list of vectors below.

[1]		[2]		$\left[0 \right]$		0		[3]	
0		0		1		0		4	
0	,	0	,	0	,	1	,	5	.
0		0		0		0		0	

- 5. Use row reduction techniques to find det(A) if $A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \end{bmatrix}$.
- 6. Let *T* be the linear transformation determined by $T(\vec{e}_1) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $T(\vec{e}_2) = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$.
- a. Find the matrix of T with respect to the standard basis $\{\vec{e}_1, \vec{e}_2\}$.
- b. Find the matrix of *T* with respect to the basis $\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- c. Is *T* an orthogonal linear transformation? Explain.
- 7. Let *A* be the matrix $\begin{bmatrix} 16 & 9 \\ -4 & 4 \end{bmatrix}$.
- a. Find all of the eigenvalues of the matrix A.
- b. For one of the eigenvalues of the matrix A compute the corresponding eigenspace.
- 8. Use Cramer's Rule to find the solutions to the system

$$2x + y = 4$$

 $3x + 10y = 3.$

Show your work.

END OF PART ONE

SM261 FINAL EXAMINATION 14 DECEMBER 2006

PART TWO: CALCULATORS ARE PERMITTED

1. Consider the matrix $A = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 4 & 1 & 5 \\ 2 & 4 & 2 & 6 \\ 1 & 2 & 2 & 4 \end{bmatrix}$.

a. Find a basis for im(A).

b. Find a basis for ker(A).

2. Suppose \vec{v}_1 , \vec{v}_2 , and \vec{v}_3 are non-zero vectors in R^3 that are orthogonal to each other, i.e. $0 = \vec{v}_1 \cdot \vec{v}_2 = \vec{v}_1 \cdot \vec{v}_3 = \vec{v}_2 \cdot \vec{v}_3$.

a. Explain why the three vectors are linearly independent.

b. Explain, using a), why the three vectors form a basis for R^3 .

3. I have 17 bills in my pocket (1's, 5's, and 10's) totalling \$77. How many of each type of bill do I have? (Use techniques from this course to solve.)

4. Let A be a 10×10 invertible matrix. Explain your answers to the following.

a. What does it mean for *A* to be invertible?

b. What are the possible values of the rank of *A*?

c. What are the possible values of the nullity of *A*?

d. What are the possible values of det(*A*)?

e. Explain why for any 10×1 vector \vec{b} the equation $A\vec{x} = \vec{b}$ is consistent, i.e. has a solution.

5. Suppose an $n \times n$ matrix A satisfies the matrix equation $A^2 + 2A = I$, where I is the $n \times n$ identity matrix. Show that A is invertible.

- 6. Suppose A is a 3×8 matrix.
- a. What are the possible values of the rank of *A*?
- b. What are the possible values of the nullity of *A*?
- c. What are the possible values of the sum of the rank and nullity of A?

7. a. Given a subspace V of \mathbb{R}^n , define V^{\perp} and explain why it is a subspace (of \mathbb{R}^n).

b. Let *V* be the subspace of
$$R^3$$
 with basis $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$. Find a basis for V^{\perp} .

- 8. Let V be the subspace of R^4 spanned by the vectors $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 2 \\ 2 \\ 0 \end{bmatrix}$.
- a. Use the Gram-Schmidt method to find an orthonormal basis for *V*.

b. Find
$$proj_{V}\begin{pmatrix} \begin{pmatrix} 4\\0\\0\\0\\0 \end{pmatrix} \end{pmatrix}$$
, the projection of the vector $\begin{bmatrix} 4\\0\\0\\0\\0 \end{bmatrix}$ onto V.
9. Suppose $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, and \vec{v}_{4} are the *rows* of a 4×4 matrix A, i.e., $A = \begin{bmatrix} \vec{v}_{1} \\ \vec{v}_{2} \\ \vec{v}_{3} \\ \vec{v}_{4} \end{bmatrix}$

Suppose also that det(A) = 2. Find the determinants of the following matrices. Explain your answers.

a. $\begin{bmatrix} & \vec{v}_3 & \\ & \vec{v}_2 & \\ & \vec{v}_1 & \\ & & \vec{v}_4 \end{bmatrix}$ b.	$\vec{v}_1 + 3\vec{v}_2$ \vec{v}_2 $4\vec{v}_3$ \vec{v}_4	c.	\vec{v}_1 \vec{v}_2 \vec{v}_2 \vec{v}_4
--	---	----	---

10. A matrix A has eigenvalues 2 and 3.

a. Show that if \vec{v} is an eigenvector of A then it is also an eigenvector of A^2 . What are the eigenvalues of A^2 ?

b. Show that if \vec{v} is an eigenvector of A then it is also an eigenvector of A^{-1} . What are the eigenvalues of A^{-1} ?

11. Find the best (least squares) fit $y = c_0 + c_1 t$ to the data (t, y) = (1, -1), (2,1), and (3,4).

12. Let *T* be the linear transformation from R^2 to R^2 which is the projection onto the line y = x. Let *A* be the matrix of the linear transformation *T*. a. Find *A*.

b. Find the eigenvalues and eigenvectors of the matrix A.

c. Use b) to find an invertible matrix S and a diagonal matrix D so that $S^{-1}AS = D$.

END OF PART TWO