DIRECTIONS: Show all of your work. There are 100 possible points, 5 per problem. Good luck!

1. For each of the following, give a complete definition.
 a. The 11 field properties for the Reals.
 b. A decreasing sequence.
 c. \(\lim_{n \to \infty} a_n = a \)
 d. \(y = f(x) \) is continuous at \(x = 4 \).
 e. An interior point of set \(S \) (a subset of the real numbers).
 f. A subsequential limit of the sequence \((s_n) \).

2. Give a complete statement of each of the following:
 a. The Archimedean Property.
 b. The Bolzano-Weierstrass Theorem.
 c. The density property for the irrationals.
 d. The intermediate value theorem.

3. For each of the following, either give an example or state why none exists.
 a. A non-empty set \(S \) of real numbers with a lower bound but not an inf.
 b. A non-empty set \(S \) of real numbers with a lower bound but not a minimum.
 c. Two convergent sequences whose quotient diverges.
 d. A Cauchy sequence that is not bounded.
 e. An unbounded sequence with a convergent subsequence.
 f. A function that is continuous on \([0, 1]\) but not uniformly continuous.

4. Prove the following giving a reason for each step.
 a. Every convergent sequence is a Cauchy sequence.
 b. \(\lim_{x \to 2} x^2 + 3x = 10 \) using the \(\varepsilon - \delta \) definition of the limit.
 c. \(f(x) = \frac{1}{x} \) is uniformly continuous on \([2, \infty)\)
 d. Let the sequence \((a_n) \) be defined by \(a_1 = 1 \) and \(a_{n+1} = \sqrt{2+a_n} \) for all \(n \in \mathbb{N} \).
 Prove that the sequence converges and find its limit.