Part I: No Calculators. State THREE of the following:

1. Taylor’s Theorem
2. Weirstrass M-test
3. Mean Value Theorem (derivative version)
4. Mean Value Theorem (integral version)
5. Definition of the radius of convergence for a power series
Part II: No Calculators. State ALL, prove ONE of the following:

1. A theorem connecting Riemann integrability and continuity.
2. A theorem connecting the convergence of a sequence of functions and the differentiability of the limit function. (partial proof)
3. A theorem connecting the convergence of a sequence of functions and the continuity of the limit function.
4. The Fundamental Theorem of Calculus
Part III. Give examples of the following; briefly explain why they work:

1. A function that is integrable but not differentiable.

2. A power series that converges for $x = 2$ and diverges for $x = 6$.

3. A non-integrable function.

4. A number α such that the series below has radius of convergence $R = 1/3$.

$$\frac{\alpha}{5} x^4 + \frac{\alpha^2}{9} x^8 + \frac{\alpha^3}{13} x^{12} + \frac{\alpha^4}{17} x^{16} + \frac{\alpha^5}{21} x^{20} + \frac{\alpha^6}{25} x^{24} + \ldots$$

5. A sequence a_n that converges to zero, yet $\sum a_n$ diverges.

6. A number p such that $\int_0^1 x^p d(x^3) = 1/5$
Part IV: Solve

1. Let \(f_n(x) = \frac{\cos(nx)}{n^2 + x} \) be functions defined on \([0, 2\pi]\).

 a. Show that \(\sum f_n \) is uniformly convergent on \([0, 2\pi]\). Denote the sum by \(f(x) \).

 b. Apply Integration by Parts Theorem to rewrite the integral of \(f_n \) as indicated/started:

 \[
 \int_{0}^{2\pi} f_n \, dx = \int_{0}^{2\pi} \frac{1}{n^2 + x} d \left(\frac{1}{n} \sin(nx) \right) =

 \]

 Use the simplified/new integral to prove that \(|\int_{0}^{2\pi} f \, dx| \leq 2\pi \sum \frac{1}{n^2} \).
2. Let \(f : [0, 1] \to \mathbb{R} \) be defined as \(f(x) = \sin \frac{2\pi}{1-x} \) for \(x \in [0, 1) \), and \(f(1) = 0 \).

a. Circle all the properties that apply for the function \(f \). Cross out the failed properties. Briefly justify your first and last answers.

- bounded
- continuous
- differentiable on \([0, 6/7]\)
- integrable on \([0, 1]\)

b. Circle all the subintervals of \([0, 1]\) for which Rolle’s theorem applies (for the function \(f \)). Cross out the intervals for which Rolle’s does not apply and briefly justify why it doesn’t:

\([0, 1/3] \quad [0, 2/3] \quad [0, 1]\).

For one interval ONLY find one point whose existence is guaranteed by Rolle’s theorem.

c. Define \(F(x) = \int_0^x \sin \frac{2\pi}{1-t} \, dt \). Find or explain why \(\lim_{x \to 1/3} \frac{F(x) - F(1/3)}{x - 1/3} \) does not exist.

d. Consider the sequences \((x_n), (y_n)\) defined by the following sums

\[
x_n = \frac{1}{n} \sum_{k=1}^{n} \sin\left(\frac{2k\pi}{n}\right) \quad \text{and} \quad y_n = \frac{1}{n} \sum_{k=0}^{n-1} \sin\left(\frac{2\pi n}{n-k}\right) = \frac{1}{n} \sum_{k=1}^{n} \sin\left(\frac{2\pi k}{n}\right).
\]

Determine whether they are convergent or divergent. If convergent, what is their limit? You may leave the answer in terms of \(f \) or \(F \).
3. Identify whether the series in \(\mathbb{R} \) given below are convergent or divergent. Briefly explain your answer.

(a) \(\sum (-1)^n e^{1/n} \)
(b) \(\sum (-1)^n \frac{1}{n + \log n} \)
(c) \(\sum \frac{n}{4^n} \)

4. Let \(f(x) = e^x + e^{-x} \). (a) Find a formula for \(T_{2n} \), the Taylor polynomial of degree \(2n \).

(b) Use Taylor Theorem to prove that for all \(x \geq 0 \)

\[
2 + x^2 + \frac{x^4}{12} \leq e^x + e^{-x}
\]
5. You may choose ONE of the following for problem 2:

OPTION 1 (OLD): Let \(f_n : [0, 4] \to [0, \infty) \) be defined as \(f_n(x) = \sqrt{x + \frac{1}{n}} \) for all \(x \in [0, 4] \). Note that the functions \(f_n \) are differentiable on \([0, 4] \).

a. Find the function \(f \), the (pointwise) limit of the sequence \((f_n)\).

b. Is \(f_n \) uniformly convergent on \([0, 4]\)? Prove your answer.

c. Is \(f'_n \) uniformly convergent on \([0, 4]\)? Prove your answer.

OPTION 2 (NEW): Let \(D_n \) denote the set of rational numbers in the interval \((0, 1]\) whose reduced denominator is less or equal to \(n \). For example \(D_4 = \{1, 1/2, 1/3, 2/3, 1/4, 3/4\} \). Use these sets to define \(f_n : [0, 1] \to [0, \infty) \) as

\[
f_n(x) = \begin{cases}
\pi & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\
\pi & \text{if } x \in \mathbb{Q} \setminus D_n \\
0 & \text{if } x \in D_n.
\end{cases}
\]

a. Sketch (separately) the graphs of \(f_3, f_4, f_5 \).

b. Find the function \(f \), the (pointwise) limit of the sequence \((f_n)\). Briefly justify your answer.

c. What can be said about the integrability of the functions \(f_n \), of \(f \) on \([0, 1]\)? Briefly justify your answer.