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A young Bill Tutte



Selected Papers of W.T. Tutte

Published in 1979 to mark Tutte’s 60th birthday (in 1977).

Ralph Stanton edited this two-volume set with D. McCarthy.

Ralph Stanton’s Foreward

“Not too many people are privileged to practically create a subject,
but there have been several this century. Albert Einstein created
Relativity . . . Similarly, modern Statistics owes its existence to Sir
Ronald Fisher’s exceptionally brilliant and creative work. And I
think that Bill Tutte’s place in Graph Theory is exactly like that of
Einstein in Relativity and that of Fisher in Statistics. He has been
both a great creative artist and a great developer.”
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• The Coming of the Matroids, W.T. Tutte, 1999
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D.H. Younger, Biographical Memoirs of Fellows of the Royal
Society, 2012

• Arthur Hobbs, who was Tutte’s fifth PhD student

• Remembering Bill Tutte, Graham Farr, The Conversation,
online, May 2017.
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Early Interest in Graph Theory



Cambridge and County High School

Rouse Ball’s book (first published in 1892) had chapters on

• Chessboard Recreations

• Map coloring Problems

• Unicursal Problems

• Some parts of Chemistry: “pure graph theory”

• Physics: Electrical circuits and Kirchhoff’s Laws

“When I became an undergraduate at Trinity College, Cambridge, I
already possessed much elementary graph-theoretical knowledge
though I do not think I had this knowledge well-organized at the
time.”
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Trinity College, 1935

• Read natural sciences, specializing in chemisty.

• Attended lectures of the Trinity Mathematical Society.

• Befriended Leonard Brooks, Cedric Smith, and Arthur Stone,
three first-year mathematics students.

• The Gang of Four or just The Four.

“As time went on, I yielded more and more to the seductions of
Mathematics.”
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First mathematical paper, 1940

Preceded by a chemistry paper in Nature, 1939.

• The dissection of rectangles into squares.
• With Brooks, Smith, and Stone.
• Duke Mathematical Journal

Problem
To divide a rectangle into unequal squares.
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The dissection of a square into squares

1939: Two papers by R. Sprague from Berlin.

On the paper as one of The Four, Tutte wrote:

“I value the paper not so much for its ostensible geometrical
results, which Sprague largely anticipated, as for its
graph-theoretical methods and observations.”

In this paper, “two streams of graph theory from my early studies
came together, Kirchhoff’s Laws from my Physics lessons, and
planar graphs from Rouse Ball’s account of the Four Colour
Problem.”
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Smith diagram

• Horizontal line segments: dots or terminals.
• Terminals lie on the corr. horiz. lines.
• Any square is represented by a wire directed downwards

joining the terminals corr. to its upper and lower edges.
• The current in each wire equals the size of the corr. square.
• Top and bottom sides become the positive and negative poles.
• All wires have unit resistance. Kirchhoff Laws hold!
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“I left Cambridge in 1941 with the idea that graph theory could be
reduced to abstract algebra but that it might not be the
conventional kind of algebra.”

May, 1941– Autumn, 1945 Bletchley Park Research Station

At Bletchley, “I was learning an odd new kind of linear algebra.”
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• Bletchley Park’s Lost Heroes, BBC Two, 2011.

• Keeping Secrets, University of Waterloo Magazine, Spring,
2015.

“According to Bletchley Park’s historians, General Dwight D.
Eisenhower himself described Tutte’s work as one of the greatest
intellectual feats of the Second World War.”
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At Bletchley: Tait’s Conjecture

Conjecture (P.G. Tait, 1884)

Every 3-connected planar cubic graph has a Hamiltonian cycle.

Theorem (WTT, 1956)

Every 4-connected planar graph has a Hamiltonian cycle.
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1945 – Back to Trinity

1942: Elected a Fellow of Trinity for his codebreaking work.

• 1945: began PhD studies in mathematics.

• Supervised by Shaun Wylie.

• 1948: PhD thesis An algebraic theory of graphs

• 417+xi pages

Shaun Wylie had advised Tutte to “drop graph theory and take up
something respectable, such as differential equations.”
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Tutte’s thesis: 1-factor theorem

A 1-factor or perfect matching in G is a set of edges that hits
every vertex exactly once.

For example, all the vertical edges in a cube.

In a graph H, let q(H) be the number of components of H with an
odd number of vertices.

Theorem (W.T. Tutte 1947)

A graph G has a 1-factor if and only if, for all S ⊆ V (G ),

q(G − S) ≤ |S |.
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Minors in graphs

A minor of a graph is obtained by a sequence of deletions or
contractions of edges or deletions of isolated vertices.
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Tutte’s thesis: A ring in graph theory

1947: Proc. Cambridge Philosophical Society

C (G ) = the number of spanning trees of a connected graph G .

Lemma
Let e be an edge that is not a loop or a cut-edge. Then

C (G ) = C (G\e) + C (G/e).

Proof.
Partition the set of spanning trees of G into:

(i) those not using e; and

(ii) those using e.

There are C (G\e) spanning trees in (i); and the spanning trees in
(ii) match up with the spanning trees of G/e.

“I wondered if complexity, or tree number, could be characterized
by the above identity alone and decided that it could not.”
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A contribution to the theory of chromatic polynomials

• 1954 sequel to A ring in graph theory.

• Tutte is now at the University of Toronto thanks to Coxeter.

• Introduces the dichromate, now the Tutte polynomial.

• A two-variable graph polynomial that specializes to the
chromatic polynomial and the flow polynomial.

Example (Flows)

Assign directions to every edge in a graph G .

A nowhere-zero k-flow assigns a flow value f (e) from the non-zero
integers mod k to every edge e of G such that, at every vertex,

flow in = flow out.

Kirchhoff’s Current Law holds at each vertex.
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Flow Conjectures

If G has a nowhere-zero k-flow, then G has no cut edges.

Conjecture (WTT, 1954)

There is a fixed number t such that every graph without cut edges
has a nowhere-zero t-flow.

Theorem (Jaeger, 1975)

Every graph without cut edges has a nowhere-zero 8-flow.

Conjecture (WTT, 1954)

Every graph without cut edges has a nowhere-zero 5-flow.

Theorem (Seymour, 1981)

Every graph without cut edges has a nowhere-zero 6-flow.
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“My thesis attempted to reduce Graph Theory to Linear Algebra.
It showed that many graph-theoretical results could be generalized
to algebraic theorems about structures I called ‘chain-groups’.
Essentially, I was discussing a theory of matrices in which
elementary operations could be applied to rows but not columns.”

Younger: “This is matroid theory.”
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From chain-groups to matroids

Example

Consider the following matrix over the field GF (2).

A =


1 2 3 4 5 6 7

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

.

This matrix gives rise to a binary matroid M = M[A]:
• ground set: E = {1, 2, . . . , 7};
• independent sets: linearly independent subsets of E .
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Figure: The Fano matroid, F7.
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Minors in matroids

M :


1 2 3 4 5 6 7

1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 0



M\1, the deletion of 1 from M:


2 3 4 5 6 7

0 0 0 1 0 1
1 0 0 1 1 0
0 1 0 0 1 0



M/1, the contraction of 1 from M:

( 2 3 4 5 6 7

1 0 0 1 1 0
0 1 0 0 1 0

)
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Duality

The dual M∗ of the matroid M of the r × n matrix [Ir |D] is the
matroid of the matrix [−DT |In−r ].



Excluded-minor characterizations: binary matroids

Example (A non-binary matroid, U2,4.)

Four collinear points.

U2,4 = M[A]

where A is the real matrix

( 1 2 3 4

1 0 1 1
0 1 1 −1

)
.

Theorem (WTT, 1958)

A matroid is binary iff it has no U2,4-minor.
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Excluded-minor characterizations: regular matroids

A real matrix is totally unimodular if every subdeterminant is in
{0, 1,−1}.

A matroid M is regular if there is a totally unimodular matrix A
such that M ∼= M[A].

Example

• Take a graph G and arbitrarily orient its edges;

• take the vertex-edge incidence matrix A of this directed graph;

• each non-zero column has one 1 and one −1;

• (Poincaré) A is totally unimodular.

Such a matroid M(G ) = M[A], derived from a graph G , is graphic.

Every graphic matroid is regular.

Theorem (WTT, 1958)

A matroid is regular iff it has none of U2,4, F7, or F ∗7 as a minor.
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A 3-connected simple graph G has an edge e such that G\e or
G/e is 3-connected and simple unless G is a wheel.

“If a theorem about graphs can be stated in terms of edges and
circuits only it probably exemplifies a more general theorem about
matroids.”
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• Organized by Jack Edmonds.

• At the National Bureau of Standards in Washington.

• Tutte gave his Lectures on Matroids.

“To me that was the year of the Coming of the Matroids. Then
and there the theory of matroids was proclaimed to the
mathematical world. And outside the halls of lecture there arose
the repeated cry: ‘What the hell is a matroid?’”
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Last matroid paper

• 1966: On the algebraic theory of graph-colorings

• In the first issue of the Journal of Combinatorial Theory.

• Generalized Hadwiger’s Conjecture to binary matroids.

• Tutte’s Tangential 2-Block Conjecture.

Conjecture (4-Flow Conjecture)

A graph without cut edges or nowhere-zero 4-flows has a Petersen
graph minor.

1981: Seymour reduced Tutte’s Tangential 2-Block Conjecture to
the 4-Flow Conjecture by using his Regular Matroids
Decomposition Theorem.
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The move away from matroids

By 1967, Tutte had essentially stopped publishing new results in
matroid theory. Why?

Reviewing his homotopy theorem for matroids, Tutte wrote:

“One aspect of this work rather upset me. I had valued matroids
as generalizations of graphs. All graph theory, I had supposed
would be derivable from matroid theory and so there would be no
need to do independent graph theory any more. Yet what was this
homotopy theorem, with its plucking of bits of circuit across
elementary configurations, but a result in pure graph theory? Was
I reducing matroid theory to graph theory in an attempt to do the
opposite? Perhaps it was this jolt that diverted me from matroids
back to graphs.”
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• First Editor-in-Chief of the Journal of Combinatorial Theory.

• 8 PhD students including Ron Mullin and Neil Robertson.

In 2012, British Prime Minister David Cameron wrote a letter to
Tutte’s niece Jeanne Youlden noting the extent to which the work
of the Bletchley Park crytographers like Professor Tutte

“not only helped protect Britain itself but also shorten the war by
an estimated two years, saving countless lives.”
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William Thomas Tutte, 1917–2002



“The three houses problem” by Blanche Descartes

In central Spain in mainly rain
Three houses stood upon the plain.

The houses of our mystery
To which from realms of industry
Came pipes and wires to light and heat
And other pipes with water sweet.

The owners said, “Where these things cross
Burn, leak or short, we’ll suffer loss
So let a graphman living near
Plan each from each to keep them clear.”

Tell them, graphman, come in vain,
They’ll bear the cross that must remain
Explain the planeness of the plain.


