Two \(n \)-vertex graphs \(G_1 \) and \(G_2 \) pack if it is possible to express \(G_1 \) and \(G_2 \) as edge-disjoint subgraphs of \(K_n \), or alternatively, if \(G_1 \subseteq \overline{G_2} \). Let \(G_1 \) and \(G_2 \) be \(n \)-vertex graphs with maximum degrees \(\Delta(G_i) = \Delta_i \) for \(i = 1, 2 \). A classic conjecture of Bollobás and Eldridge and, independently, Catlin says that if

\[
(\Delta_1 + 1)(\Delta_2 + 1) \leq n + 1,
\]

then \(G_1 \) and \(G_2 \) pack. A sequence \(\pi = (d_1, \ldots, d_n) \) is graphic if there is a simple graph \(G \) with vertex set \(\{v_1, \ldots, v_n\} \) such that the degree of \(v_i \) is \(d_i \). \(G \) is said to be a realization of \(\pi \). In this talk we show that graphic sequence analogs of the classic conjecture hold. In particular, if Equation 1 holds, then there exists some graph \(G_3 \) with the same vertex degrees as \(G_2 \) that packs with \(G_1 \).