United States Naval Academy Mechanical Engineering Department EM371 Introduction to Design

Catalog Description: EM211 Statics

An initial course in applied vector mechanics with emphasis on static equilibrium. Topics include forces, moments, couples, equivalent force-couple systems, centroids, distributed forces, and Coulomb friction. The application of the free body diagram in the analysis of static equilibrium of frames, machines and trusses is stressed.

Prerequisites:NoneCorequisites:Calculus III and Physics I

Textbooks: R. C. Hibbeler Engineering Mechanics, Statics, 14th Edition Prentice Hall, Inc

Course Director: Associate Professor John Burkhardt

Course Content:

No.	Topic or Subtopic	hrs.
1	Introduction	1
3	Forces and Vectors	2
4	Particle Equilibrium	5
5	Force Resultants	5
6	Rigid Body Equilibrium	8
7	Structural Analysis	4
8	Internal Forces	5
9	Friction	5
10	Center of Gravity	2
11	Moments of Inertia	1

Assessment Methods:

		YES	NO
А	Quizzes	Х	
В	Homework	Х	
С	Exams	Х	
D	Laboratory Reports		Х
E	Oral Presentations		Х
F	Design Reports/Notebooks		Х
G	Prototypes/Demonstrations		Х
Н	Projects		Х
Ι	Other		Х

Credit: 3 (3-0-3)

EM211 Statics

Course Outcomes¹

Students will be able to:

- 1. construct free-body diagrams. (A,B,C)
- 2. solve particle equilibrium problems. (A,B,C)
- 3. solve rigid body equilibrium problems. (A,B,C)
- 4. solve for member forces in plane trusses. (A,B,C)
- 5. solve for member forces in frames and machines. (A,B,C)
- 6. calculate internal forces and moments in beams. (A,B,C)
- 7. construct shear and moment diagrams for beams. (A,B,C)
- 8. analyze the behavior of rigid bodies subjected to Coulomb dry friction. (A,B,C)
- 9. calculate the centroid and moment of inertia of simple and composite plane areas. (A,B,C)
- 10. communicate solutions to engineering problems clearly and effectively. (A,B,C)

Program	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Outcomes										
(a)	Х	Х	Х	Х	Х	Х	Х	Х	Х	
(b)										
(c)										
(d)										
(e)	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
(f)										
(g)										Х
(h)										
(i)										
(j)										
(k)										

¹ Letters in parenthesis refer to the assessment methods listed in the previous section.

Date of Latest Revision: 02 MAY 2018