1. (6 points) The mass density of an ideal gas was found to be 1.97 kg m\(^{-3}\) at 350 K and 38 kPa. What is the molar mass of the compound?

\[
\begin{align*}
1 & \text{ if } V = 1.00 \text{ m}^3 \\
\eta & = \frac{pV}{RT} = \frac{(38000 \text{ Pa})(1.00 \text{ m}^3)}{(8.314 \text{ J/mol} \cdot \text{K})(350 \text{ K})} = 13.1 \\
M & = \frac{m}{\eta} = \frac{1.97 \times 10^{-3} \text{ g}}{13.1 \text{ mol}} = 1.51 \text{ g/mol}
\end{align*}
\]

2. (6 points) At an altitude of 20 km the temperature is 217 K and the pressure is 0.050 atm. What is the mean free path of \(N_2\) molecules under these conditions? (\(\sigma = .43 \text{ nm}^2\))

\[
\lambda = \frac{\sqrt{\frac{\pi \sigma}{2}}}{\sqrt{\frac{2}{\rho}} \cdot \sqrt{(1.38 \times 10^{-23} \text{ J/mol} \cdot \text{K})(217 \text{ K})}}
\]

\[
= 1.37 \times 10^{-6} \text{ m}
\]

3. At 400 K and 20 atm, the compression factor of a gas is 0.82.

a. (4 points) Calculate the volume occupied by .056 mol of the gas under these conditions.

\[
Z = \frac{PV}{\rho} = \frac{RT \frac{Z}{\rho}}{\rho} = \frac{(.08206)(400)(.82)}{20} = 1.35 \text{ L}
\]

\[
V = nV_m = (.056)(1.35) = 0.75 \text{ L}
\]

b. (4 points) Calculate an approximate value of the second virial coefficient \(B\) at 400 K.

\[
Z \approx 1 + \frac{B}{V_m}
\]

\[
B \approx -V_m (1-Z) = -(1.35)(1-.82) = -0.243 \text{ L/mol}
\]
4. (6 points) The critical molar volume of Br₂ is 135 cm³ mol⁻¹ and the critical pressure is 102 atm. Use this information to calculate the van der Waals constants \(a \) and \(b \) for bromine. Be sure you show units with your answers.

\[
V_c = 3 \ell
\]

\[
b = \frac{1}{3} V_c = \frac{1}{3} (135) \approx 45.0 \text{ cm}^3/\text{mol}
\]

\[
\rho_c = \frac{a}{27 \ell^2}
\]

\[
a = \rho_c \cdot 27. \ell^2 = (102 \text{ atm}) (27) (45.0 \text{ cm}^3/\text{mol})^2
\]

\[
= 5.58 \times 10^6 \text{ cm}^6/\text{atm/}\text{mol}^2 = 5.58 \text{ L}^2/\text{atm/}\text{mol}^2
\]

5. (8 points) 8.00 moles of a perfect gas are allowed to expand isothermally at a temperature of 400 K, from an initial volume of 10.0 L to a final volume of 100.0 L, against a constant external pressure equal to the final pressure of the gas. Calculate \(q \), \(w \), \(\Delta U \), and \(\Delta H \) for the gas.

\[
\rho_p = \rho_{ext} = \frac{nRT}{V_f} = \frac{8.00 \text{ mol} (0.08206 \text{ L atm/mol K}) (400 \text{ K})}{100.0 \text{ L}}
\]

\[
= 2.63 \text{ atm}
\]

\[
w = -\rho_{ext} \Delta V = -(2.63 \text{ atm}) (100.0 - 10.0 \text{ L}) (101.325 \text{ J/L atm})
\]

\[
= -23.9 \text{ kJ}
\]

\[
\Delta U = 0 \quad (T = \text{ const})
\]

\[
\Delta H = \Delta U + \Delta (nRT) = \Delta U + \Delta (nRT) = 0 + 0 = 0
\]

\[
q = \Delta U - w = 0 - w = +23.9 \text{ kJ}
\]

6. (6 points) An ideal gas, when expanded adiabatically and reversibly from 380 K and 3.00 atm to a final pressure of 1.00 atm, is found to have a temperature of 278 K. What is the molar heat capacity \(C_{V, m} \) for the gas?

\[
\frac{1}{R} \ln \left(\frac{T_2}{T_1} \right) = \frac{1}{C_{p, m}} \ln \left(\frac{P_2}{P_1} \right)
\]

\[
C_{p, m} = \frac{R \ln \left(\frac{P_2}{P_1} \right)}{\ln \left(\frac{T_2}{T_1} \right)} = \frac{8.314 \ln \left(\frac{150}{3.00} \right)}{\ln \left(\frac{278}{380} \right)} \approx 29.2 \text{ J/mol K}
\]

\[
C_{V, m} = C_{p, m} - R = 29.2 - 8.3 = 20.9 \text{ J/mol K}
\]
7. a. (4 points) Calculate the enthalpy change $\Delta_{n}H^{\circ}$ at 25°C for the reaction
$\text{N}_2\text{O}_4(\text{g}) \rightarrow 2\text{NO}_2(\text{g}),$
using data from Table 2C.7, p. 876.

\[
\Delta_{n}H^{\circ} = 2 \Delta_{f}H^{\circ}(\text{NO}_2) - \Delta_{f}H^{\circ}(\text{N}_2\text{O}_4)
\]
\[
= 2(33.18) - 9.16
\]
\[
= 57.20 \text{ kJ}
\]

b. (6 points) The molar heat capacities $C_{p,m}^{\circ}$ for N_2O_4 and NO_2 are given in Table 2C.7 as 77.28 and 37.20 J mol$^{-1}$ K$^{-1}$, respectively, and may be assumed to be temperature-independent. Calculate $\Delta_{r}H^{\circ}$ for the reaction of part (a) at 300°C.

\[
\Delta C_{p}^{\circ} = 2 C_{p,m}^{\circ}(\text{NO}_2) - C_{p,m}^{\circ}(\text{N}_2\text{O}_4)
\]
\[
= 2(37.20) - 77.28 = -2.88 \text{ J/mol} \cdot \text{K}
\]
\[
= -2.88 \times 10^{-3} \text{ kJ/mol} \cdot \text{K}
\]

\[
\Delta H^{\circ}(300) = \Delta H^{\circ}(298) + \Delta C_{p}^{\circ} \Delta T
\]
\[
\Delta H^{\circ}(573) = \Delta H^{\circ}(298) + (-2.88 \times 10^{-3} \text{ kJ/mol} \cdot \text{K})(573 - 298)
\]
\[
= \Delta H^{\circ}(298) - .79
\]
\[
= 57.20 - .79
\]
\[
= 56.41 \text{ kJ}
\]