IT360: Applied Database Systems

Slide Set: #3

Relational Model
(Kroenke: Chapter 3, pg 71-81)
ER To Relational
(Kroenke: Chapter 6)

Database Design Process

- Requirements analysis
- Conceptual design: Entity-Relationship Model
- Logical design: transform ER model into relational schema
- Schema refinement: Normalization
- Physical tuning

Goals

- Understand:
 - The relational model
 - Relational model terminology
- Transform ER model to relational model
- Write SQL statements to create tables

Why Study the Relational Model?

- Most widely used model.
 - Vendors: IBM, Microsoft, Oracle, Sybase, etc.
- Recent competitors:
 - Object-Oriented model
 - ObjectStore, Versant, Ontos
 - A synthesis: object-relational model
 - Informix Universal Server, Oracle, DB2
 - XML
SQL - The Language of Databases

- Developed by IBM in the 1970s
- Create and process database data
- SQL programming is a critical skill !!!

Facebook and Databases

- Relational databases are accessed in much the same way across the board: SQL. Learning how SQL works is crucial to getting anything done in databases, and any GUI is largely a wrapper around the SQL statements one uses to make those actions happen.
- Knowing a little about database design (layout, B-trees, file storage, normalization) is good, mostly for helping you understand good queries.
- We run the LAMP stack here, so we primarily use MySQL databases across the site.
- I hope this helps a little. Another good motivation may be found in the requirements for most engineering positions here on http://www.facebook.com/jobs.php#Opportunities ;)

Thanks!
Nick from Facebook

Relational Database

- A relation is a two-dimensional table
- Relation schema describes the structure for the table
 - Relation name
 - Column names
 - Column types
- A relational database is a set of relations

Relation Example

```
EMPLOYEE(EmployeeNumber:integer, FirstName:string, LastName:string, Department:string, Email:string, Phone:integer)
```

<table>
<thead>
<tr>
<th>EmployeeNumber</th>
<th>FirstName</th>
<th>LastName</th>
<th>Department</th>
<th>Email</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Jerry</td>
<td>Johnson</td>
<td>Accounting</td>
<td>J@somewhere.com</td>
<td>236-9187</td>
</tr>
<tr>
<td>200</td>
<td>Mary</td>
<td>Abernathy</td>
<td>Finance</td>
<td>M@somewhere.com</td>
<td>415-8818</td>
</tr>
<tr>
<td>300</td>
<td>Liz</td>
<td>Smothers</td>
<td>Finance</td>
<td>L@somewhere.com</td>
<td>777-0035</td>
</tr>
<tr>
<td>400</td>
<td>Tom</td>
<td>Courdian</td>
<td>Accounting</td>
<td>T@somewhere.com</td>
<td>236-9187</td>
</tr>
<tr>
<td>500</td>
<td>Tom</td>
<td>Jackson</td>
<td>Production</td>
<td>J@somewhere.com</td>
<td>444-9999</td>
</tr>
<tr>
<td>600</td>
<td>Eleanor</td>
<td>Caltera</td>
<td>Legal</td>
<td>E@somewhere.com</td>
<td>767-9900</td>
</tr>
<tr>
<td>700</td>
<td>Richard</td>
<td>Bandalone</td>
<td>Legal</td>
<td>R@somewhere.com</td>
<td>767-9900</td>
</tr>
</tbody>
</table>
Relation

- All entries in a column are of the same kind
- Each column has a unique name
- Cells of the table hold a single value
- The order of the columns is not important
- The order of the rows is not important
- No two rows may be identical
- Rows contain data about entity instances
- Columns contain data about attributes of the entity

Tables That Are Not Relations

Alternative Terminology

- Although not all tables are relations, the terms table and relation are normally used interchangeably
- The following sets of terms are equivalent:

<table>
<thead>
<tr>
<th>Table</th>
<th>Column</th>
<th>Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation</td>
<td>Attribute</td>
<td>Tuple</td>
</tr>
<tr>
<td>File</td>
<td>Field</td>
<td>Record</td>
</tr>
</tbody>
</table>

ER to Relational

- Transform entities in tables
- Transform relationships using foreign keys
- Specify logic for enforcing minimum cardinalities
Create a Table for Each Entity

- **CREATE TABLE** statement is used for creating relations/tables
- Each column is described with three parts:
 - column name
 - data type
 - optional constraints

Specify Data Types

- Choose the most specific data type possible!!!
- Generic Data Types:
 - CHAR(n)
 - VARCHAR(n)
 - DATE
 - TIME
 - MONEY
 - INTEGER
 - DECIMAL

Specify Null Status

- **Null status:** whether or not the value of the column can be NULL

Specify Default Values

- **Default value** - value supplied by the DBMS, if no value is specified when a row is inserted
Specify Other Data Constraints

- **Data constraints** are limitations on data values

```sql
CREATE TABLE EMPLOYEE (
    EmployeeNumber integer NOT NULL,
    EmployeeName char (50) NOT NULL,
    Phone char (15) NULL,
    Email char(50) NULL,
    HireDate date NOT NULL DEFAULT (getdate()),
    ReviewDate date NULL,
    CONSTRAINT Check_Email CHECK (Email LIKE '/*@gmail.com')
)
```

Integrity Constraints (IC)

- **IC**: condition that must be true for any instance of the database
 - Domain constraints
 - Key constraints
 - Foreign Key constraints
- ICs are **specified** when schema is defined
- ICs are **checked** when relations are modified
- A **legal instance** of a relation is one that satisfies all specified ICs
- DBMS should not allow illegal instances

Keys

- A **key** is a combination of one or more columns that is used to identify rows in a relation
- A **composite key** is a key that consists of two or more columns
- A set of columns is a **key** for a relation if:
 1. No two distinct rows can have same values in all key columns, and
 2. This is not true for any subset of the key
- Part 2 false? A **superkey**

Candidate and Primary Keys

- A **candidate key** is a key
- A **primary key** is a candidate key selected as the primary means of identifying rows in a relation:
 - There is one and only one primary key per relation
 - The primary key may be a composite key
 - The **ideal primary key** is short, numeric and never changes
Surrogate Keys

- **Surrogate key** is an artificial column added to a relation to serve as a primary key:
 - DBMS supplied
 - Short, numeric and never changes – an ideal primary key!
 - Has artificial values that are meaningless to users
 - Remember Access (ID – auto number)

Specify Primary Key

- Entity identifier ➔ primary key (usually)

```sql
CREATE TABLE EMPLOYEE (
    EmployeeNumber integer NOT NULL,
    EmployeeName char (50) NOT NULL,
    Phone char (15) NULL,
    Email char(50) NULL,
    HireDate date NOT NULL DEFAULT (getdate()),
    ReviewDate date NULL,
    CONSTRAINT Check_Email CHECK (Email LIKE '%@gmail.com'),
    CONSTRAINT PK_Employee PRIMARY KEY (EmployeeNumber)
)
```

Specify Alternate Keys

- **Alternate keys**: alternate identifiers of unique rows in a table

```sql
CREATE TABLE EMPLOYEE (
    EmployeeNumber integer NOT NULL,
    EmployeeName char (50) NOT NULL,
    Phone char (15) NULL,
    Email char(50) NULL,
    HireDate date NOT NULL DEFAULT (getdate()),
    ReviewDate date NULL,
    CONSTRAINT Check_Email CHECK (Email LIKE '%@gmail.com'),
    CONSTRAINT PK_Employee PRIMARY KEY (EmployeeNumber),
    CONSTRAINT AK_Email UNIQUE (Email),
    CONSTRAINT AK_NamePhone UNIQUE (EmployeeName, Phone)
)
```

ICE: Is This a Relation? Why?

<table>
<thead>
<tr>
<th>A</th>
<th>X</th>
<th>C</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>Ryan</td>
<td>MD</td>
<td>jr@gmail.com</td>
</tr>
<tr>
<td>Bob</td>
<td>Smith</td>
<td>MD, VA, NY</td>
<td>bsm@gmail.com</td>
</tr>
<tr>
<td>Alice</td>
<td>Brown</td>
<td>CA</td>
<td></td>
</tr>
<tr>
<td>Jane</td>
<td>Doe</td>
<td>WA</td>
<td>jd@yahoo.com</td>
</tr>
<tr>
<td>John</td>
<td>Ryan</td>
<td>MD</td>
<td>jr@gmail.com</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
ICE: Find possible PK, AK

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>W</td>
</tr>
<tr>
<td>John</td>
<td>Ryan</td>
<td>MD</td>
<td>jr@gmail.com</td>
</tr>
<tr>
<td>Bob</td>
<td>Smith</td>
<td>MD</td>
<td>bsm@gmail.com</td>
</tr>
<tr>
<td>Alice</td>
<td>Brown</td>
<td>CA</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td>Doe</td>
<td>WA</td>
<td>jd@yahoo.com</td>
</tr>
</tbody>
</table>

Foreign Keys and Referential Integrity Constraints

- A foreign key is the primary key of one relation that is placed in another relation to form a link between the relations.
- A referential integrity constraint: the values of the foreign key must exist as primary key values in the corresponding relation → No ‘dangling references’

ER to Relational

- Transform entities in tables
- Transform relationships using foreign keys
- Specify logic for enforcing minimum cardinalities

Create Relationships: 1:1 Strong Entity Relationships

- Place the key of one entity in the other entity as a foreign key:
 - Either design will work – no parent, no child
 - Minimum cardinality considerations may be important:
 - O-M will require a different design than M-O
Enforcing Referential Integrity

- What if a new “Member” row is added that references a non-existent locker?
 - Reject it!
- What if a Locker row is deleted?
 - Also delete all Member rows that refer to it.
 - Disallow deletion of Locker row that is referred.
 - Set `LockerNumber` in **Member** to default value
 - Set `LockerNumber` in Member to `null`
- Similar if primary key of Locker row is updated

Referential Integrity in SQL/92

- SQL/92 supports all 4 options on deletes and updates.
 - Default is NO ACTION (delete/update is rejected)
 - CASCADE (delete/update all rows that refer to deleted/updated row)
 - SET NULL / SET DEFAULT

```sql
CREATE TABLE CLUB_MEMBER(
    MemberNumber integer PRIMARY KEY,
    MemberName char(50),
    Phone char(15),
    Email char(50),
    LockerNumber integer NULL,
    CONSTRAINT FK_Locker FOREIGN KEY (LockerNumber) REFERENCES LOCKER(LockerNumber),
    CONSTRAINT Unique_Locker UNIQUE(LockerNumber))
```

```sql
CREATE TABLE LOCKER(
    LockerNumber integer PRIMARY KEY,
    LockerRoom integer,
    LockerSize integer)
```
Create Relationships: 1:N Relationships

- "Place the key of the parent in the child"

Create Relationships: 1:N Strong Entity Relationships

CREATE TABLE COMPANY
 CompanyName char(50) PRIMARY KEY,
 City char(50),
 Country char(50),
 Volume decimal

CREATE TABLE DEPARTMENT
 DepartmentName char(50) PRIMARY KEY,
 BudgetCode char(5),
 MailStop integer,
 CompanyName char(50) NOT NULL,
 CONSTRAINT FK_Company FOREIGN KEY (CompanyName) REFERENCES COMPANY (CompanyName) ON DELETE NO ACTION

Create Relationships: 1:N Identifying Relationship

CREATE TABLE BUILDING
 BuildingName char(50) PRIMARY KEY,
 Street varchar(50),
 City char(50),
 State char(30),
 Zip integer

CREATE TABLE APARTMENT
 ApartmentNumber integer NOT NULL,
 BuildingName char(50) NOT NULL,
 NumberBedrooms integer,
 NumberBaths integer,
 MonthlyRent decimal,
 CONSTRAINT PK_Apartment PRIMARY KEY (BuildingName, ApartmentNumber),
 CONSTRAINT FK_Building FOREIGN KEY (BuildingName) REFERENCES BUILDING (BuildingName) ON DELETE CASCADE ON UPDATE CASCADE

Create Relationships: N:M Strong Entity Relationships

- In an N:M relationship there is no place for the foreign key in either table:
 - A COMPANY may supply many PARTs
 - A PART may be supplied by many COMPANYs
Create Relationships: N:M Strong Entity Relationships

- Create an **intersection table**:
 - The primary keys of each table → **composite primary key** for intersection table
 - Each table’s primary key becomes a foreign key linking back to that table

Example

CREATE TABLE COMPANY
- `CompanyName` char(50) PRIMARY KEY
- `City` char(50)
- `Country` char(50)
- `Volume` decimal

PART
- `PartNumber` integer PRIMARY KEY
- `PartName` char(50)
- `SalesPrice` decimal
- `ReOrderQuantity` integer
- `QuantityOnHand` integer

COMPANY_PART
- `CompanyName` char(50) NOT NULL
- `PartNumber` integer NOT NULL
- CONSTRAINT PK_CompPart PRIMARY KEY (CompanyName, PartNumber)
- CONSTRAINT FK_Company FOREIGN KEY (CompanyName) REFERENCES COMPANY (CompanyName) ON DELETE CASCADE ON UPDATE CASCADE
- CONSTRAINT FK_Part FOREIGN KEY (PartNumber) REFERENCES PART (PartNumber) ON DELETE NO ACTION ON CASCADE UPDATE

Subtype Relationships

CREATE TABLE EMPLOYEE
- `EmployeeNumber` integer PRIMARY KEY
- ... other columns...

CREATE TABLE MANAGER
- `EmployeeNumber` integer PRIMARY KEY
- `MgrTrainingDate` date
- `ManagerLevel` integer
- CONSTRAINT PK_Emp FOREIGN KEY (EmployeeNumber) REFERENCES EMPLOYEE (EmployeeNumber) ON DELETE CASCADE

CREATE TABLE DB_ADMIN
- `EmployeeNumber` integer PRIMARY KEY
- `DB_Name` char(50)
- `DBMS` char(50)
- CONSTRAINT PK_Emp FOREIGN KEY (EmployeeNumber) REFERENCES EMPLOYEE (EmployeeNumber) ON DELETE CASCADE

ER to Relational

- Transform entities in tables
- Transform relationships using foreign keys
- Specify logic for enforcing minimum cardinalities
FOREIGN KEY Constraints

DEPARTMENTS
- DepartmentName: char(18)
- Phone: char(18)
- Building: char(18)
- Room: integer

STUDENTS
- StudentNumber: integer
- StudentLastName: char(18)
- StudentFirstName: char(18)
- Email: varchar(50)
- PhoneNumber: char(18)
- DepartmentName: char(18)

CREATE TABLE Departments
(DepartmentName char(18),
 Phone char(18) NOT NULL,
 Building char(18),
 Room integer,
 PRIMARY KEY (DepartmentName))

CREATE TABLE Departments
(DepartmentName char(18),
 Phone char(18) NOT NULL,
 Building char(18),
 Room integer,
 PRIMARY KEY (DepartmentName))

Enforcing Mandatory Parent

DEPARTMENT (DepartmentName, BudgetCode, ManagerName)

CREATE TABLE EMPLOYEE
(EmployeeNumber integer PRIMARY KEY,
 EmployeeName char(50),
 DepartmentName char(50) NOT NULL,
 CONSTRAINT FK_Dept FOREIGN KEY(DepartmentName)
 REFERENCES DEPARTMENT(DepartmentName)
 ON DELETE NO ACTION
 ON UPDATE CASCADE)

Enforcing Mandatory Child

- More difficult to enforce (write code – “triggers”)
- DEPARTMENT (DepartmentName, BudgetCode, ManagerName)
- EMPLOYEE (EmployeeNumber, EmployeeName, DepartmentName)

- Tricky:
 - A department must have some employee
 - EMPLOYEE has DepartmentName as FK, NOT NULL

Summary – Relational Model

- 2-D tables
- Relational schema: structure of table
- Constraints
 - Domain
 - Key
 - Candidate, Primary, Alternate, Surrogate
 - Foreign key – Referential integrity constraint
ER to Relational - Summary

- Transform entities in tables
 - Specify primary and alternate keys
 - Specify column types, null status, default values, constraints
- Transform relationships using foreign keys
 - Place the key of the parent in the child
 - Create intersection tables, if needed
- Specify logic for enforcing minimum cardinalities
 - Actions for insert, delete, update

SQL: Creating Tables

```sql
CREATE TABLE table_name(
  column_name1 column_type1 [constraints1],
  ...
) WITH [OPTIONS] [JSON [STORAGE] [(index1, column_type1)]]
```

Table constraints:
- NULL/NOT NULL
- PRIMARY KEY (columns)
- UNIQUE (columns)
- CHECK (conditions)
- FOREIGN KEY (local_columns) REFERENCES foreign_table (foreign_columns) [ON DELETE action_d ON UPDATE action_u]

Specify surrogate key in SQL Server:
```
column_name int_type IDENTITY (seed, increment)
```
Class Exercise:
University ER Data Model