Database Management and Organization

- How does Wal-Mart manage its 200 TB data warehouse?
- What is the database technology behind eBay’s website?
- How do you build an Oracle 9i, MySQL or Microsoft SQL Server database?

Database Management Systems (DBMS)

- Information is one of the most valuable resources in this information age
- How do we effectively and efficiently manage this information?
 - Relational database management systems
 - Dominant data management paradigm today
- 6 billion dollars a year industry!

Outline

- Class Survey
- Why Databases (DB)?
 - A Problem
 - DB Benefits
- In This Class?
 - Admin
 - Syllabus
 - Policy
ICE: The Mid Store

- Create a system to keep track of inventory

Problems

- Changes to data - Data model
- "on the fly" queries
- Data inconsistencies
- Security of information (views)
- Performance
- Partial processing
- Concurrency

Why Database Management Systems?

- Benefits
 - High-level abstractions for data modeling, access, manipulation, and administration
 - Data integrity and security
 - Performance and scalability
 - Transactions (concurrent data access, recovery from system crashes)

Data Model

- Entity-Relationship model
- Relational model
- Object-oriented model
- Object-relational model
- XML
The Relational Data Model

- Turing Award for Codd in 1980
- Tables
- Database

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>byear</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jones</td>
<td>1960</td>
<td>NY</td>
</tr>
<tr>
<td>2</td>
<td>Smith</td>
<td>1974</td>
<td>CA</td>
</tr>
<tr>
<td>3</td>
<td>Smith</td>
<td>1980</td>
<td>NY</td>
</tr>
</tbody>
</table>

The Object-Oriented Data Model

- Richer data model. Goal: Bridge mismatch between programming languages and the database system.
- Example components of the data model:
 - Relationships between objects directly as pointers.
- Result: Can store abstract data types directly in the DBMS
 - Pictures
 - Geographic coordinates
 - Movies
 - CAD objects

Object-Oriented DBMS

- Advantages:
 - Engineering applications (CAD and CAM and CASE computer aided software engineering), multimedia applications.
- Disadvantages:
 - Querying is much harder

Object-Relational DBMS

- Mixture between the object-oriented and the object-relational data model
 - Combines ease of querying with ability to store abstract data types
 - Conceptually, the relational model, but every column type is a class
 - All major relational vendors are currently extending their relational DBMS to the object-relational model
XML

<table>
<thead>
<tr>
<th>Id</th>
<th>Speed</th>
<th>RAM</th>
<th>HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>800MHz</td>
<td>256MB</td>
<td>40GB</td>
</tr>
<tr>
<td>102</td>
<td>933MHz</td>
<td>512MB</td>
<td>40GB</td>
</tr>
</tbody>
</table>

Query Languages

- We need a high-level language to describe and manipulate the data
- Requirements:
 - Precise semantics
 - Easy integration into applications written in C++/Java/Visual Basic/etc.
 - Easy to learn
 - DBMS needs to be able to efficiently evaluate queries written in the language

SQL: Structured Query Language

- IBM (System R) in the 1970s
- ANSI standard since 1986
- Example:
  ```sql
  SELECT *
  FROM Customers
  WHERE Customers.cid = 3
  ```

Why Database Management Systems?

- Benefits
 - High-level abstractions for data modeling, access, manipulation, and administration
 - Data integrity and security
 - Performance and scalability
 - Transactions (concurrent data access, recovery from system crashes)
Integrity Constraints

- **Integrity Constraints (ICs):** Condition that must be true for any instance of the database.
- ICs are specified when schema is defined.
- ICs are checked when tables are modified.
- A legal instance of a table is one that satisfies all specified ICs.
- DBMS should only allow legal instances.
- Example: Domain constraints.

Security

- **Secrecy:** Users should not be able to see things they are not supposed to.
 - E.g., A student can’t see other students’ grades.
- **Integrity:** Users should not be able to modify things they are not supposed to.
 - E.g., Only instructors can assign grades.
- **Availability:** Users should be able to see and modify things they are allowed to.

Why Database Management Systems?

- **Benefits**
 - High-level abstractions for data modeling, access, manipulation, and administration
 - Data integrity and security
 - **Performance and scalability**
 - Transactions (concurrent data access, recovery from system crashes)

DBMS and Performance

- **Efficient implementation of all database operations**
- **Indexes**
- **Query optimization**
- **Automatic high-performance concurrent query execution, query parallelization**
Why Database Management Systems?

- Benefits
 - High-level abstractions for data modeling, access, manipulation, and administration
 - Data integrity and security
 - Performance and scalability
 - Transactions (concurrent data access, recovery from system crashes)

What is a Transaction?

The execution of a program that performs a function by accessing a database.

- Examples:
 - Buy an airline ticket.
 - Withdraw money from an ATM.
 - Verify a credit card sale.
 - Order an item from an Internet retailer.

Transactions

- A transaction is an atomic sequence of actions
- Each transaction must leave the system in a consistent state
- The ACID Properties

Example Transaction: Online Store

Your purchase transaction:
- Atomicity: Either the complete purchase happens, or nothing
- Consistency: The inventory and internal accounts are updated correctly
- Isolation: It does not matter whether other customers are also currently making a purchase
- Durability: Once you have received the order confirmation number, your order information is permanent, even if the site crashes
What Makes Transaction Processing Hard?

- Reliability
- Availability
- Response time
- Throughput
- Scalability
- Security
- Configurability
- Atomicity
- Durability
- Distribution

What Makes TP Important?

- It is at the core of electronic commerce
- Most medium-to-large businesses use TP for their production systems.
- It is a huge slice of the computer system market – over $50 B/year

Summary Of DBMS Benefits

- High-level abstractions for data access
 - Data models
- Data integrity and security
 - Key constraints, integrity constraints, access control
- Performance and scalability
 - Parallel DBMS, distributed DBMS, performance tuning
- Transactions
 - ACID properties, concurrency control, recovery

Best Jobs!
Course Topics

- Database design
- Relational model
- SQL
- Normalization
- Database administration
- PHP
- MySQL

Course Goals

- Explain the main advantages of modern database management systems over file systems.
- Design, create, and query relational databases to satisfy user requirements.
- Design, build and deploy database-backed applications with dynamic website front-end.
- Implement data access control mechanisms for database and application security.
- Analyze the ethical issues and responsibilities related to records management

Things We Will NOT Cover

- Relational algebra and calculus
- Implementation of index structures
- Query evaluation and optimization

How to BUILD a Database Management System
Success in IT420

- Lecture – stay engaged
 - Take notes – provided slides are not enough!
 - Exams closed-book – but open-note!
 - Ask & answer questions
- Make the most of in-class lab time
 - Read lab in advance
 - Think before you start typing
 - Don’t stay stuck!
- Don’t fall behind
 - Finish lab early and leave time for reading
 - See me for help and/or talk to friends
 - Course material builds on itself and gets more complex

Academic Integrity - Honor

- Collaboration on labs/ hws is allowed, but submitted work should be your own
 - Cite any assistance, from any sources
- Collaboration on projects, quizzes and exams is prohibited
 - http://www.cs.usna.edu/academics/honor.htm

Resources

- Lecture slides / your notes
- Textbook: Database Processing by David Kroenke
- Database Management Systems by R. Ramakrishnan and J. Gehrke
- PHP and MySQL Web Development by L. Welling and L. Thomson