Storing Data: Disks and Files

(From Chapter 9 of textbook)

Storing and Retrieving Data

- Database Management Systems need to:
 - Store large volumes of data
 - Store data reliably (so that data is not lost!)
 - Retrieve data efficiently
- Alternatives for storage
 - Main memory
 - Disks
 - Tape

Why Not Store Everything in Main Memory?
- Costs too much.
- Main memory is volatile.

Why Not Store Everything in Tapes?
- No random access.
- Slow!
Disks

- Secondary storage device of choice
- Main problem?

Solution 1: Techniques for making disks faster

- Intelligent data layout on disk
- Redundant Array of Inexpensive Disks (RAID)

Solution 2: Buffer Management

- Keep “currently used” data in main memory
- Typical (simplified) storage hierarchy:

Outline

- Disk technology and how to make disk read/writes faster
- Buffer management
- Storing “database files” on disk
Components of a Disk

- **Platters**
- **Spindle**
- **Disk head**
- **Arm assembly**
- **Tracks**
- **Sector**

- Only one head reads/writes at any one time.
- Block size is a multiple of sector size (which is fixed).

Accessing a Disk Page

- Time to access (read/write) a disk block:
 - **Seek time**: 1 to 20msec
 - **Rotational delay**: 0 to 10msec
 - **Transfer rate**: ~ 1msec per 4KB page

- Key to lower I/O cost: reduce seek/rotation delays!

Arranging Pages on Disk

- **`Next` block concept**:

 - Blocks in a file should be arranged sequentially on disk (by `next`), to minimize seek and rotational delay.

In-Class Exercise

- Consider a disk with:
 - average seek time of 15 milliseconds
 - average rotational delay of 6 milliseconds
 - transfer time of 0.5 milliseconds/page
 - Page size = 1024 bytes
 - Table: 200,000 rows of 100 bytes each, no row spans 2 pages

- **Find**:
 - Number of pages needed to store the table
 - Time to read all rows sequentially
 - Time to read all rows in some random order
In-Class Exercise Solution

RAID (Redundant Array of Independent Disks)
- Disk Array: Arrangement of several disks that gives abstraction of a single, large disk.
- Goals: Increase **performance** and **reliability**.
- Two main techniques:
 - Data striping
 - Redundancy

Parity
- Add 1 redundant block for every n blocks of data
 - XOR of the n blocks
- Example: D1, D2, D3, D4 are data blocks
 - Compute DP as D1 XOR D2 XOR D3 XOR D4
 - Store D1, D2, D3, D4, DP on different disks
 - Can recover any one of them from the other four by XORing them

RAID Levels
- Level 0: No redundancy
 - Striping without parity
- Level 1: Mirrored (two identical copies)
 - Each disk has a mirror image (check disk)
 - Parallel access: reduces positioning time, but transfer only from one disk.
 - Maximum transfer rate = transfer rate of one disk
 - Write involves two disks.
RAID Levels (Contd.)

- **Level 0+1: Striping and Mirroring**
 - Parallel reads.
 - Write involves two disks.
 - Maximum transfer rate = aggregate bandwidth
 - Combines performance of RAID 0 with redundancy of RAID 1.
 - Example: 8 disks
 - Divide into two sets of 4 disks
 - Each set is a RAID 0 array
 - One set mirrors the other

- **Level 3: Bit-Interleaved Parity**
 - Striping Unit: One bit. One check disk.
 - Each read and write request involves all disks; disk array can process one request at a time.

- **Level 4: Block-Interleaved Parity**
 - Striping Unit: One disk block. One check disk.
 - Parallel reads possible for small requests, large requests can utilize full bandwidth
 - Writes involve modified block and check disk

- **Level 5: Block-Interleaved Distributed Parity**
 - Similar to RAID Level 4, but parity blocks are distributed over all disks
 - Eliminates check disk bottleneck, one more disk for higher read parallelism
In-Class Exercise

- How does the striping granularity (size of a stripe) affect performance, e.g., RAID 3 vs. RAID 4?

In-Class Exercise Solution

Which RAID to Choose?

- RAID 0: great performance at low cost, limited reliability
- RAID 0+1 (better than 1): small storage subsystems (cost of mirroring limited), or when write performance matters
- RAID 3 (better than 2): large transfer requests of contiguous blocks, bad for small requests of single blocks
- RAID 5 (better than 4): good general-purpose solution

Corrected.

- RAID 0: great performance at low cost, limited reliability
- RAID 0+1 (better than 1): small storage subsystems (cost of mirroring limited), or when write performance matters
- RAID 5 (better than 3, 4): good general-purpose solution
Disk Space Management

- Lowest layer of DBMS software manages space on disk.
- Higher levels call upon this layer to:
 - allocate/de-allocate a page
 - read/write a page
- Request for a sequence of pages must be satisfied by allocating the pages sequentially on disk! Higher levels don’t need to know how this is done, or how free space is managed.

Structure of a DBMS

These layers must consider concurrency control and recovery.