Errata: Evading Data Monitoring with Human Movement Networks

Adam J. Aviv\textcopyright \hspace{1em} Micah Sherr\textcopyright \hspace{1em} Matt Blaze\textcopyright \hspace{1em} Jonathan M. Smith\textcopyright

\textcopyrightUniversity of Pennsylvania \hspace{1em} \textcopyrightGeorgetown University

{aviv,blaze,jms}@cis.upenn.edu \hspace{1em} msherr@cs.georgetown.edu

In *Evading Cellular Data Monitoring with Human Movement Networks* [1], an error in simulation led to the presentation of inaccurate results in Figure 3, *left* and *center*. The results for 5\% probabilistic random walk were depressed by the error, and although HUMANET still outperforms random walk with a corrected simulator under the parameters described, a 5\% random walk performs much better than reported.

After identifying and correcting the error, further analysis of the routing model for random walk led us to conclude that a 5\% exchange rate for random walk is a poor point of comparison for HUMANET. Specifically, a 5\% exchange rate is more than double the probability of a message exchange for HUMANET. In the results below, we performed a more fair comparison using a 2\% probability of exchange. In Figure 1, the difference in exchange rate between HUMANET, 2\% and 5\% random walk is presented. Additionally, we found that local timeouts can skew results upwards for HUMANET. Instead, a *first-pass always* condition was employed where the message originator will always pass the message without checks.

![Probability of Exchange](image1)

![Exchange Occurrences in Simulations](image2)

Figure 1: left: *The probability of exchange comparison for 2\% and 5\% random walk with HUMANET; right: Comparison with number of exchanges for 2\% random walk and HUMANET.*

The experiments in [1] were reevaluated using the corrected simulator, and HUMANET is compared to a 2\% probabilistic random walk and, as a baseline, to a *never-pass* walk where no message hand-offs occur after the initial exchange from the message originator. As described, a first-pass always condition is used instead of a local timeout for all algorithms. The global timeout of a message is set to one week, and 14 different time slices are used for simulation. We also use a conservative measure of a contact: two node’s timestamps must be within 10 seconds and their distance must be no more than 10 meters. As before, 300 independent runs of the simulator with unique sender/receiver pairs are used. All simulations were run using the *cabspotting* mobility data set [2].

The results of the experiments are presented in Fig. 2. The delivery rate (Fig. 2, *left*) of HUMANET and 2\% random walk are similar, but in all but two of the time slices, HUMANET out performs random walk. The average delivery rate for HUMANET is 78\% compared to 76.5\% for random walk. Similar results are seen for message latency (Fig. 2, *right*); the average latency for HUMANET is 63 versus 66 hours for random walk. In summary, HUMANET generally outperforms random walk which demonstrates the benefits of using movement profiles.

![Delivery Rate](image3)

![Latency](image4)

Figure 2: *Comparison of delivery rate (left) and average latency (right) for HUMANET, 2\% Random Walk and Never-Pass Walk. The delay relates to the number of days in simulation time before message exchanges start. Inset is the average delivery rate and latency across all simulation runs.*
References
