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1 Introduction

Integer factoriztion has long been an important problem in number theory,
and with developments in computing and cryptography, its importance con-
tinues to rise. Though there are many fast algorithms for factoring numbers,
this paper focuses on the square forms factorization (SQUFOF) algorithm
(see Algorithm 4 below for a precise description). Daniel Shanks developed
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SQUFOF in the 1970’s, and it is still the fastest known algorithm for fac-
toring integers in the 20- to 30-digit range. SQUFOF is currently used in
conjunction with more recent algorithms that need to factor 20-digit numbers
in order to generate their results.

Most of the Shanks’ original work on SQUFOF was not published (see
however, [Sh1]) and his notes are incomplete1. One purpose of this paper is
to present Shanks’s original SQUFOF algorithm in its entirety for the first
time. The paper goes on to present several interesting results concerning
both traditional SQUFOF and its parallelization.

1.1 Main results

This paper contains 3 new results:

1. A proof that the two-sided continued fraction of the normalized square
root (an important part of the SQUFOF algorithm) has several very
attractive properties - periodicity, a symmetry point corresponding to
a factorization of N , and so on (see Theorems 6, 8, and 9 for details).

2. A proof of the infrastructure distance formula, Theorem 11 below,
which is also an important part of SQUFOF. This is in some sense
well-known but a proof has not, as far as we can see, appeared in the
literature.

3. Empirical results comparing two techniques for parallelization of SQUFOF,
showing that while the multipliers method is superior for small numbers
of processors, it becomes less efficient per processor as the number of
processors increases. The segments method maintains its efficiency per
procesor as the number of processors increases, and thus is predicted
to be superior for large numbers of processors.

2 Continued Fractions and Quadratic Forms

The stepping stone for SQUFOF is the continued fraction expansion for the
square root of N . (We slightly simplify matters by instead using the “normal-
ized square root (4) here.) The terms of this continued fraction expansion
give rise to a sequence of quadratic forms of discriminant N via (5). We

1These notes have been typed in and are available on the web [Sh2], [Sh3], [Sh4].
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shall describe SQUFOF in terms of the “cycle” of continued fractions in the
periodic expansion of (4) and the corresponding quadratic forms.

2.1 Integral binary quadratic forms

There is a “dictionary” between certain aspects of

• indefinite integral binary quadratic forms,

• ideals in a real quadratic number field,

• the simple continued fraction of quadratic surds.

The reader will be assumed to be familiar with at least the basic aspects of
this correspondence. For details, see for example, Buell [Bu], Lenstra [Len],
Williams [W] (especially pp. 641-645), Cohen [Coh] and the references found
there, or [M].

A binary quadratic form (or simply a “form”) is a homogeneous form
of degree two in two variables x, y,

f(x, y) = ax2 + bxy + cy2 = (x, y) ·
(

a b/2
b/2 c

)
·
(
x
y

)
,

for some constants a, b, c. This form shall also be denoted by the triple
(a, b, c). The discriminant2 of f is D = disc(f) = b2 − 4ac. In this note,
we shall focus on the case D > 0, in which case the form is called indefinite.
From now on, we assume without further mention that D > 0 is a non-square
such that D ≡ 0 (mod 4) or D ≡ 1 (mod 4).

If a, b, c ∈ Z then we say f is integral. If moreover gcd(a, b, c) = 1 then
we say the form is primitive. Let F (D) denote the set of all integral forms
of discriminant D and let F (D)p denote the subset of primitive ones.

The groups

GL2(Z) = {γ =

(
s t
u v

)
| s, t, u, v ∈ Z, det(γ) = ±1},

and
SL2(Z) = {γ ∈ GL2(Z) | det(γ) = 1}

act on the polynomials Z[x, y] via

2Sometimes also called the determinant of f .
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γ =

(
s t
u v

)
: (x, y) 7−→ (sx+ ty, ux+ vy).

Therefore, they also act on the set of integral forms via

(γ∗f)(x, y) = f(sx+ ty, ux+ vy),

for γ ∈ GL2(Z). In terms of the symmetric matrix A =

(
a b/2
b/2 c

)
associated to the form f , this action may be epressed as

γ∗(A) = tγ · A · γ.

We say that two forms f1, f2 are equivalent if f2 = γ∗f1, for some γ ∈
GL2(Z). We say that two forms f1, f2 are properly equivalent, written
f1 ∼ f2, if f2 = γ∗f1, for some γ ∈ SL2(Z). For f ∈ F (D), we let

F (D)f = [f ] = {f ′ ∈ F (D) | f ∼ f ′}

denote the proper equivalence class of f . An element γ ∈ GL2(Z) is called
an automorph of f if γ∗f = f . A form f is called ambiguous if it has an
automorph in GL2(Z) − SL2(Z). Note that if f ∈ F (D) is ambiguous then
each f ′ ∈ [f ] is also ambiguous.

We say that two forms (a1, b1, c1), (a2, b2, c2) ∈ F (D) are adjacent if
c1 = a2 and b1 + b2 ≡ 0 (mod 2a2). In this case, we say that (a2, b2, c2) is
to the right of (a1, b1, c1) ((a1, b1, c1) is to the left of (a2, b2, c2)).

2.1.1 Reduction

A form (a, b, c) is called reduced if |D1/2 − 2|a|| < b < D1/2. Let F (D)red

denote the subset of reduced forms of discriminant D.

Lemma 1 (a) Given any f ∈ F (D)red there is a unique f ′ ∈ F (D)red ad-
jacent to the right of f and a unique f ′′ ∈ F (D)red adjacent to the left of
f .

(b) There are exactly two reduced ambiguous forms in a cycle of reduced
forms in an ambiguous class.
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For (a) see Buell [Bu], page 23; for (b), see [Bu], Theorem 9.12. Lemma
1 allows us to define the cycle of reduced forms associated to f ∈ F (D)red:
it is the set of all f ′ ∈ F (D)red which is adjacent to the left or right of f .
This cycle is denoted F (D)red,f .

Lemma 2 An ambiguous equivalence class contains two points of symmetry,
that is, pairs of reduced adjacent forms, (c, b, a) to the left of (a, b, c), in the
cycle that are the symmetric reverse of each other. In that case, either a
divides the determinant, or a/2 divides the determinant.

This follows from Theorem 9 below.
It is evident that if a form is ambiguous, then each form in its equivalence

class is also ambiguous.

Proposition 3 The set F (D)red of reduced forms can be partitioned into
cycles of adjacent forms.

Consider the action of

Tm =

(
1 m
0 1

)
on a form (a, b, c): Tm(a, b, c) = (a′, b′, c′), where a′ = a, b′ = b + 2am,

c′ = (b′)2−D
4a′

. This defines a map Tm : F (D)→ F (D), for each m ∈ Z.
Consider the action of

W =

(
0 −1
1 0

)
on a form (a, b, c): W (a, b, c) = (a′, b′, c′), where a′ = c, b′ = −b, c′ = a. This
defines a map W : F (D)→ F (D).

Algorithm 1 (Reduction)
Input: f ∈ F (D).
Output: f ′ ∈ F (D)red with f ∼ f ′.
Let f(x, y) = ax2 + bxy + cy2 and let

Ja,D = {x | − |a| < x < |a|, if |a| ≥ D1/2, −2|a| < x < D1/2, if |a| < D1/2}.

1. Apply Tm to (a, b, c) to obtain a form (a, b′, c′), where b′ ∈ Ja,D and c′ is
chosen so that the new form has discriminant D.
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2. If (a, b′, c′) is reduced then return f ′(x, y) = ax2 + b′xy + c′y2. Otherwise,
replace (a, b′, c′) by W (a, b′, c′) = (c′,−b′, a) and go to step 1.

According to Lagarias [L1], this has complexity O(log(max(|a|, |b|, |c|))).
Define the adjacency map ρ : F (D)→ F (D) by

ρ(a, b, c) = (a′, b′, c′), (1)

where a′ = c, b′ ∈ Jc,D, and b′ ≡ −b (mod 2c), and c′ is determined by the
condition disc(a′, b′, c′) = D. This defines a bijection ρ : F (D)red → F (D)red.

Unfortunately, given f ∈ F (D) with D > 0 there are usually several
f ′ ∈ F (D)red which are properly equivalent to f . In other words, the cycle

F (D)red,f = {f ′ ∈ F (D)red | f ∼ f ′} = {f ′ = ρnf | n ∈ Z}

can be rather large. Indeed, it is known that |F (D)red,f | = O(D1/2+ε), for
each ε > 0, where the exponent 1/2 is best possible (Lagarias [Len, L2]) and
where the O-constant depends on ε.

2.1.2 Composition

The composition of forms has important properties for SQUFOF. The rules
of composition are fairly general. A binary quadratic form F is called a
composition of f, g ∈ F (D) if it satisfies an equation such as

f(x, y)g(u, v) = F (B1(x, y, u, v), B2(x, y, u, v)), (2)

where B1 and B2 are quadratic forms in x, y, u, v of a certain type. The exact
conditions B1, B2 satisfy do not concern us here (see Cox [Cox] if you are
curious and Gauss [G] if you are really curious). The point is that there may
be more than one pair B1, B2 satisfying (2), so that the composition F is
not unique. (However, the conditions on B1, B2 specified by Gauss do imply
that, for a given f, g ∈ F (D) any two such compositions must be equivalent
to each other.) One way around this ambiguity is to specify a choice of B1, B2

and hence define F uniquely.
The idea described below was known in some form to Dirichlet and pos-

sibly Gauss.

Algorithm 2 Input: (a1, b1, c1), (a2, b2, c2) ∈ F (D).
Output: A composition (a1a2

m2 , B, (B2−D)m2

4a1a2
) ∈ F (D).

6



1. Compute m = gcd(a1, a2,
b1+b2

2 ). (Since D = b2
i − 4aici, for i = 1, 2, b1 and

b2 have the same parity.)
2. Solve the congruences

a2mB ≡ mb1a2 (mod 2a1a2),
a1mB ≡ mb2a1 (mod 2a1a2),

b1+b2
2 mB ≡ m b1b2+D

2 (mod 2a1a2),

simultaneously an integer B. Choose the solution with smallest absolute
value.

See [Sh1] or [Bu] for a proof of the correctness of this algorithm. Buell [Bu]
also provides the substitutions that would be needed for Gauss’s definition
of composition.

In other words, we define the composition of (a1, b1, c1), (a2, b2, c2) ∈
F (D) to be the form resulting from the above algorithm:

(a1, b1, c1) ∗ (a2, b2, c2) = (
a1a2

m2
, B,

(B2 −D)m2

4a1a2

).

Remark 1 The binary operation ∗ : F (D) × F (D) → F (D) is associative
but not its “restriction” # : F (D)red × F (D)red → F (D)red (where # is
composition algorithm 2 followed by reduction algorithm 1).

Let f, g ∈ F (D)red be elements in the principal cycle of discriminant D.
It was observed by D. Shanks (see §5 in Lenstra [Len]) that cycles enjoy a
“coset-like property” ρkf#ρ`g = ρak,`(f#g), for some ak,` ∈ Z . In partic-
ular, the principal cycle is closed under composition. Therefore, the the set
of complete quotients of the continued fraction of such an α can be identified
with a set closed under #.

For further discussion of this, see Lenstra [Len] (5.1).
The “structure” of a cycle has been termed the “infrastructure” of F (D)

by D. Shanks.

If f, f ′, g, g′, h ∈ F (D) then Gauss showed
(a) (f ∗ g) ∗ h ∼ f ∗ (g ∗ h), and
(b) f ∼ f ′ and g ∼ g′ imply f ∗ g ∼ f ′ ∗ g′.

These imply that the set of equivalence classes of forms of discriminant D is
a group C(D), called the class group of D. From the construction, it is
clear that f ∗ g ∼ g ∗ f , so C(D) is abelian.

The following Theorem was known to Shanks, since SQUFOF depends
essentially on it.
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Theorem 4 An equivalence class has order 2 or 1 in the class group if and
only if it is ambiguous.

Any form (1, b, c) ∈ F (D) acts as the identity for ∗. The cycle of the
identity is the principal cycle of forms. Any form f whose square f 2 = f∗f
belongs to the principal cycle is an ambiguous form ([Bu], Corollary 4.9).

2.2 Continued fractions

Throughout, assume that N ≡ 1 (mod 4) and is not a perfect square.
We shall only consider simple continued fractions here. In other words,

if α ∈ R is the number we want to compute the continued fraction of, let
x0 = α, b0 = bαc, where bxc denotes the floor of x, and, for i > 0, let

xi =
1

xi−1 − bi−1

, bi = bxic . (3)

The term xi is called the ith complete quotient of α and bi is called the ith

partial quotient of α. The simple continued fraction of α is ([HW]):

α = b0 +
1

b1 + 1
b2+...

,

also written [b0, b1, b2, ...]. We are only concerned with continued fractions
of an irrational α ∈ K = Q(

√
N). In this case, the sequence b0, b1, b2, ... is

eventually periodic.
For example, let

α =


√

N+b√Nc−1

2
,
⌊√

N
⌋

even,
√

N+b√Nc
2

,
⌊√

N
⌋

odd.
(4)

We call this α the normalized square root of N . The continued fraction
sequence b0, b1, ... is (purely) periodic. In general, the period of α is the size
of the cycle associated to the identity in the class group (Buell [Bu], Theorem
3.18 (a)).

At each step in the continued fraction expansion, it is possible to sim-

plify xi − bi to the form
√

N−Pi

Qi
∈ [0, 1), where Pi, Qi ∈ Z satisfy P 2

i ≡ N

(mod Qi). In general, if P,Q are positive integers and x =
√

N+P
Q

satisfies
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P 2 ≡ N (mod Q), 0 < P <
√
N , |
√
N −Q| < P , then we say that x is re-

duced. It is known that if x, y are two such reduced numbers and y = γ(x)

(where γ =

(
a b
c d

)
∈ SL2(Z) acts on R̂ = R ∪ {∞} by γ(x) = ax+b

cx+d
)

then y occurs in the simple continued fraction expansion of x as a complete
quotient (and x occurs in the simple continued fraction expansion of y as a
complete quotient). See Buell [Bu], Proposition 3.20 for a proof.

If P,Q are positive integers and x =
√

N+P
Q

then we associate to x the
quadratic forms

f− = (−Q/2, P,−P
2 −N
2Q

), f+ = (Q/2, P,
P 2 −N

2Q
), (5)

which have discriminant N . (We implicitly assume here that P 2−N
2Q
∈ Z and

Q is even. Note that if x is reduced then so are f±, and conversely.)

Lemma 5 (H. Cohen [Coh], §5.7.1) The continued fraction expansion of
the quadratic irrational corresponding to the unit reduced form is not only
periodic but symmetric.

What is the continued fraction analog of “adjacency” of forms? Applying
the adjacency map (1) is roughly analogous to the “stepping” process of
going from one complete quotient to the next in a continued fraction. See
Williams §5 for a discussion of the the ideal-theoretic analog, at least for the

case of the simple continued fraction of −1+
√

N
2

.
One tool used by many different algorithms is the continued fraction

expression for (4), where N is the number to be factored. This expression is
calculated recursively: x0 = α, b0 = bx0c, and using (3) in general. Observe
that solving equation (3) for xi−1 gives xi−1 = bi−1 + 1

xi
.

The recursive formulas are, for i ≥ 0,

xi+1 = 1
xi−bi

= Qi√
N−Pi

=
√

N+Pi

Qi+1

= bi+1 +
√

N−Pi+1

Qi+1
,

bi = bxic.

(6)

Theorem 6 provides some well-known fundamental properties and identities
of continued fractions.
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Theorem 6 ([Ri])
In the continued fraction expansion of (4), with x0 = α, each xi reduces

to the form
√

N+Pi−1

Qi
, with unique Qi, Pi ∈ Z satisfying

(a) N = P 2
i +QiQi+1,

(b) Pi = biQi − Pi−1,

(c) bi =
⌊
b
√

Nc+Pi−1

Qi

⌋
≥ 1,

(d) 0 < Pi <
√
N ,

(e) |
√
N −Qi| < Pi−1,

(f) Qi is an integer,

(g) Qi+1 = Qi−1 + bi(Pi−1 − Pi).

(h) This sequence is eventually periodic.

(i)
⌊√

N+Pi

Qi

⌋
=
⌊√

N+Pi−1

Qi

⌋
= bi.

These denominators {Qi} will be referred to as pseudo-squares. (In-
deed, for i ≥ 0, if we write [b0, b1, ...bi] = Ai

Bi
then A2

i−1 − B2
i−1N = (−1)iQi

and so A2
i−1 ≡ (−1)iQi (mod N).)

Remark 2 The fact that each xi reduces to the form
√

N+Pi−1

Qi
is important

for computational efficiency because this together with (c) imply that floating
point arithmetic is not necessary for any of these calculations. Also, by use
of (b) and (g), the arithmetic used in this recursion is on integers < 2

√
N .

Since the continued fraction is eventually periodic, it is reasonable to
consider that when it loops around on itself, the terms being considered
may have come from some terms “earlier” in the recursion. Lemma 7 shows
that by exchanging these two related expressions, the direction is reversed.
The algorithm for stepping a continued fraction expansion in the opposite
direction will be precisely the same as the one for the forward direction,
except that the numerator is changed first. Note that this same change
(with the exception of c0) could be achieved by merely changing the sign of
Pi−1.
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Lemma 7 Let N , and, for i ≥ 0, let xi, bi, Pi, Qi be as in Theorem 6. Let

y0 =
√

N+Pi+1

Qi+1
and let c0 = by0c. If we define, for j ≥ 1, yj = 1

yj−1−cj−1
,

cj−1 = [yj−1] then c0 = bi+1 and yj =
√

N+Pi−j+1

Qi−j+1
, when 0 ≤ j ≤ i.

Using Lemma 7 to go backwards in the continued fraction expansion,
denote the terms before x0 as x−1, x−2, .... The sequence {xi | i ∈ Z} will
be called the two-sided continued fraction of x0. Define Q−i and P−i

similarly, i ≥ 0.

Theorem 8 (a) With these conventions on the negative indices, Theorem 6
applies for all i ∈ Z.

(b) Define xi as in Theorem 6, i ∈ Z. There exists a positive integer π
such that for all i ∈ Z, xi = xi+π.

(c) Let x0 = α such that Q0 | 2P−1 (as in equation (4)). The sequence of
pseudo-squares is symmetric about Q0, so that for all i ∈ Z, Qi = Q−i.

This follows easily from the lemma above so the proof is omitted.
This demonstrates an important fact about continued fractions: that the

direction of the sequences of pseudo-squares and residues can be reversed
(i.e. the indices decrease) by making a slight change and applying the same
recursive mechanism. The presence of one point of symmetry allows a proof
that another point of symmetry exists and that a factorization of N may be
obtained from this symmetry3:

Theorem 9 Let s = bπ
2
c, where π is the period from Theorem 8. If π is

even then (a) Qs+i = Qs−i, (b) Qs 6= Q0, (c) Ps = Ps−1, and (d) Qs | 2N ,
for all i ∈ Z. If π is odd then, for all i ∈ Z,

• Qs+i+1 = Qs−i, and

• either (a) gcd(Qs, N) is a nontrivial factor of N , or (b) −1 is a quadratic
residue of N .

The argument for the first statement is in [W], pages 641-642. For an
elementary proof of both statements, see [M].

3This was actually discovered in the opposite order. It was clear that ambiguous forms
that met this criteria provided a factorization but was later realized that these same forms
produced symmetry points. This was first noticed by Gauss [G] and first applied by Shanks
[Sh4].
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2.3 Infrastructure distance formula

For m < n, and for {xi}i∈Z, the terms in the continued fraction in (6), Shanks
defined infrastructure distance by

D(xm, xn) = log

(
n∏

k=m+1

xk

)
. (7)

We abuse notation and writeD(Fm, Fn) as well for this quantity, where a form
F corresponds to a term x in the continued fraction via the map x 7−→ f+

(5). Lenstra [Len] adds a term of 1
2
log(Qn/Qm) to this (where Q denotes

the pseudo-square term of x), with the effect that the resulting formulas are
slightly simplified but the proofs are more complicated and less intuitive.
Definition 7 is also used by Williams in [W].

Since the quadratic forms are cyclic, in order for the distance between
two forms to be measured consistently, it must be considered modulo the
distance around the principal cycle.

Definition 10 Let π be the period of the principal cycle. The regulator
R of the class group is the distance around the principal cycle, that is, R =
D(F0, Fπ).

Therefore, distance must be considered modulo R, so that D is a map
from pairs of forms to the interval [0, R) ⊂ R. The addition of two distances
must be reduced modulo R as necessary.

Theorem 11 (infrastructure distance formula) If F1 ∼ Fk are equivalent
forms and G1 ∼ G` are equivalent forms and Dρ,1 is the reduction distance
for F1 ∗G1 and Dρ,2 is the reduction distance for Fk ∗G` and m1 and mk are
the factors cancelled in each respective composition (Algorithm 2), then

D(F1#G1, Fk#G`) = D(F1, Fk) +D(G1, G`) +Dρ,2 −Dρ,1 + log(m2/m1)

proof : Here is a sketch. (For more details, see Theorem A.5.2 in [M].)
As each quadratic form is associated with a reduced lattice, an analysis of

distance requires a connection between reduced lattices (see §3 of [W] for the
definition of reduced lattice). We use the notation of Williams [W] without
further mention.

If L denotes lattice in Q(
√
N), let L(L) denote the least positive integer

contained in it.
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Lemma 12 (Lemma A.4.2 of [M]) Let I be a primitive ideal and let L denote
the lattice corresponding to I. If L′ is a lattice with basis {1, ξ} and for some
θ, θL′ = L, then the ideal J corresponding to the lattice L′ is a primitive
ideal and

(L(I)θ)J = (L(J))I (8)

The method of Voronoi (see for example [W]) is used to obtain a se-
quence of adjacent minima, corresponding to a sequence of reduced lattices.
Consider a sequence of lattices L1, L2, · · · corresponding to ideals K1, K2, · · ·
corresponding to binary quadratic forms F1, F2, · · ·, corresponding to terms
x1, x2, · · · in a continued fraction expansion (6). If, for two adjacent lattices
in the sequence, ξi is defined by Li+1 = 1/ξiLi, then the chain of adjacent
minima of L1 are defined by θk =

∏k−1
i=1 ξi, so θkLk = L1 (see [W], §3).

Distance between such lattices is then defined by

D(Lk,L`) = log(θk/θ`) (9)

and this definition of distance corresponds exactly to the definition given for
quadratic forms (see [W], §6).

Although this definition has so far only been applied to reduced ideals
(for the definition of reduced ideal, see for example [W] §2) and lattices,
the reduction of ideals and lattices corresponding to quadratic form and
continued fraction reduction is well known:

Lemma 13 (Lemma A.5.1 in [M]) Let I be any primitive ideal in Z[
√
N ].

There exists a reduced ideal Ik and a θk ∈ I such that (L(I)θk)In = (L(Ik))I.

Here θk may be efficiently computed by Voronoi’s method or by continued
fractions. Then the reduction distance is defined by Dρ = − log(θk) and may
be considered as the distance from I to Ik.

Let I1 denote the ideal corresponding to the form F1 in the usual way
(as in [Len]), let J1 be the ideal corresponding to G1, and let K1 denote the
ideal corresponding to F1 ∗G1. We have that (s)K1 = I1J1, for some s. Let
Kj be a reduced ideal and λ ∈ K1 such that

λKj = K1. (10)

Then Kj is the ideal corresponding to F1#G1.
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Similarly, let Ik denote the ideal corresponding to the quadratic form Fk

and J` be the ideal corresponding to the form G`. If H1 denotes the ideal
corresponding to the composition Fk ∗ G`, then (t)H1 = IkJ`, for some t.
Let H be a reduced ideal and choose η ∈ H1 such that ηH = H1. Then H
corresponds to Fk#G`.

Let µ and φ be such that µIk = I1 and φJ` = J1. Combining these
equations, gives

Kj = K1/λ = I1J1/λs = (
µφ

λs
)IkJ` = (

sµφ

λt
)H1 = (

sµφη

λt
)H.

Set ψ = sµφη
λt

and then ψH = Kj, so that by (9),

D(Kj, H) = − log(ψ) = − log(µ)− log(φ)− log(η) + log(λ)− log(s/t)

= D(I1, Ik) +D(J1, J`) +D(H1, Hj)−D(K1, Kj) + log(t/s),

as desired. �

Remark 3 Shanks stated Square Forms Factorization has an expected run-
time of O( 4

√
N) (see Gower [Go] for a detailed discussion of this).

We explain a related idea remarked on by H. Lenstra [Len], page 148.

The idea is to first compute the regulator R. This has complexity O(N
1
5
+ε),

assuming the Riemann hypothesis [Len]. Now use the “baby-step giant-step”
method (as discussed in §13 of [Len]) to get close to the symmetry point:

Algorithm 3 (Baby-step giant-step)
Input: N and R
Output: Factorization of N

1. Compute the form F associated to the first or second steps of the continued
fraction algorithm of the normalized square root of N , (4).

2. while F is not within R/4 of the symmetry point (where distance is judged
using the distance formula in Theorem 11).

(a) Store F in a Collection Fc
(b) F = F#F (These are the “giant-steps”)

3. Use the intermediate forms in Fc to compose with F until within log N of the
symmetry point.

4. Using the forward and backward steps (see Theorem 8) of the continued
fraction algorithm (“baby steps”), locate the symmetry point.

5. using Lemma 2 find a factorization of N .

Steps 2, 3, and 4, each takeO(logN), so that the factorization takesO(N
1
5
+ε).
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3 SQUFOF

Formally, here is the algorithm for factoring N :

Algorithm 4 (SQUFOF)
Input: N .
Output: A factor of N

1. Q0 ← 1, P0 ← b
√

Nc, Q1 ← N − P 2
0

2. r ← b
√

Nc
3. while Qi 6= perfect square for some i even

(a) bi ←
⌊

r+Pi−1

Qi

⌋
(b) Pi ← biQi − Pi−1

(c) Qi+1 ← Qi−1 + bi(Pi−1 − Pi)
(d) if i = 2n for some n Store (Qi, 2 · Pi)

4. F0 = (
√

Qi, 2 · Pi−1,
P 2

i−1−N

Qi
)

5. Compose F0 with stored forms according to the binary representation of i/2
and store result to F0.

6. F0 = (A,B, C)
7. Q0 ← |A|, P0 ← B/2, Q1 ← |C|
8. q0 ← Q1, p0 ← P0, q1 ← Q0

9. while Pi 6= Pi−1 and pi 6= pi−1

(a) Apply same recursive formulas to (Q0, P0, Q1) and (q0, p0, q1)
10. If Pi = Pi−1, either Qi or Qi/2 is a nontrivial factor of N .
11. If pi = pi−1, either qi or qi/2 is a nontrivial factor of N .

3.1 Proof

Let N , the number to be factored, not be a perfect square. Expanding the
continued fraction for

√
N , let Q be the first square pseudo-square found on

an even index. Let r =
√
Q. Let F = (r2, b, c) be the associated quadratic

form. Then (r, b, rc), which reduces with reduction distance Dρ = 0 to
G = (r, b′, c′) is a reduced quadratic form whose square is F . Therefore, by
Theorem 4, G is ambiguous and thus has a symmetry point in its cycle.

Since by Theorem 11, 2D(Gs, G) = D(Fs, F ) (mod R) where Fs is
the symmetry point of the principal cycle with coefficient 1, D(Gs, G) =
D(Fs, F )/2 (mod R/2). Since the two points of symmetry are R/2 away
from each other, this means that there is a symmetry point at distance
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D(Fs, F )/2 behind G. Therefore, a point of symmetry may be found by
reversing G and traveling this short distance. Now if the coefficient at this
symmetry point is ±1, then there would have been a pseudo-square in the
continued fraction expansion equal to r somewhere before F . If the coeffi-
cient is 2, then this symmetry point could be composed with G to find 2r at
an earlier point in the principal cycle. Therefore, if neither r nor 2r were en-
countered before F in the continued fraction expansion, then the symmetry
point provides a nontrivial factor for N .

4 Parallel SQUFOF

With the large amount of computation required for factorization, the effi-
ciency of a parallel implementation is especially important for factorization
algorithms (see Brent [Br] for a survey and some terminology).

There have been proposed two ways to parallelize SQUFOF: using multi-
pliers and using segments. We will discuss the segments method here. More
information on the multipliers method can be found in Gower [Go].

4.1 Segments

The segments technique depends upon the ability to use composition to jump
to arbitrary locations in the principal cycle. The cycle can be divided into
multiple equal-sized sub-sequences and each sub-sequence can be searched
by one of the processors. As recently as ANTS 2004, Pomerance suggested
investigating parallel SQUFOF (personal communication; see also [W] page
645).

When factoring using SQUFOF parallelized by segments, we choose a
quadratic form G several steps into the cycle and then square it several times
(how many times is more an art than a science - it depends on the number
of processors and their speed and wanting to have segments which finish fast
but not too fast, say 20-30 in our case). Call the resulting form F . For i ≥ 1,
each F 2i is assigned to processor i as a beginning of another segment, [F 2i,
ρ(F 2i), ρ2(F 2i), .., F 2i+2], where ρ is the adjacency map. When processor i
finds a pseudo-square which is a perfect square, that form H may used to
find the symmetry point as follows. Note H = ρ2n(F 2i), for some n. First,
take the square root of H and reverse it, call this H ′. This is in a new cycle
of quadratic forms. Next, compose H ′ with F i, call it H ′′. Finally, compose
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H ′′ with powers of G to bring it closer to the symmetry point.

Algorithm 5 (Segment-based Parallel SQUFOF)
Input: N
Output: A factor of N
Preparation:

1. r ← b
√

Nc
2. F0 ← (1, 2r, N − r2)
3. Cycle F0 several steps forward.
4. for i = 1 to size (size is the logarithmic size of a segment.)

(a) Fi ← Fi−1 ∗ Fi−1

5. F ← Fi

Processor 0:
1. Assign one processor to search from F0 to Fsize.
2. Fstart ← Fsize,Fend ← F 2

size,FrootS ← Fsize−1,FrootE ← Fsize,Fstep ← Fsize−1

3. while A factor hasn’t been found

(a) Wait for a processor to be free and send Fstart, Fend, and FrootS .
(b) Fstart ← Fend,FrootS ← FrootE ,FrootE ← FrootE ∗ Fstep ,Fend ← F 2

rootE

Processor n:
1. Receive Fstart, Fend, and FrootS

2. count← 0
3. F0 = (A,B, C)
4. while A factor is not found and Fstart 6= Fend

(a) Cycle Fstart forward 2 steps.
(b) count← count+1
(c) if A is a perfect square

i. Ftest ← F
−1/2
start

ii. Ftest ← Ftest ∗ FrootS

iii. for j = size to 1 (This loop composes Ftest with the necessary
A. if count > 2j forms to bring it close to the symmetry point.)
B. Ftest ← Ftest ∗ Fj

C. count← count −2j

D. Search in both directions from Ftest for a symmetry point.
E. if Factorization found at symmetry point, output and quit.

5. if A factor is still not found, receive new Fstart, Fend, and FrootS and start
over.
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Since there is no overlap between the segments searched by the processors
and since the perfect squares appear to be distributed evenly throughout the
principal cycles, this parallelization should be efficient for any number of
processors. There are two hazards when choosing selecting the size of the
segment. If the segment size is too small, the processors will finish their
segments so quickly that receiving new segments will become a bottleneck.
Alternately, if the segments are too long, the processors may divide up more
than the entire cycle, so that there is overlap. However, except for rare
numbers that will factor fast regardless, there is significant room in between
these two bounds.

Remark 4 The segments based parallelization described here has been imple-
mented in C using MPI and run on a 64 processor SGI Origin 2800. Detailed
results and comparisons to the multipliers method can be found in McMath
[M]. Initial results indicate that the segments method does indeed continue
to be efficient when the number of processors is increased.

5 Conclusion

This paper, aside from presenting SQUFOF in its entirety for the first time,
has shown that the algorithm can be presented in terms of an elegent the-
oretical framework using two-sided continued fractions and class groups of
quadratic forms over a real quadratic field. It further proved the infrastruc-
ture distance formula on the cycle of forms in the class group.
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