(20 pts) Exercise 2-28

(10 pts) Add comments to the MIPS code above. This code processes two arrays and produces an important value in register $v0. Assume that each array consists of 2500 words indexed 0 through 2499, that the base addresses of the arrays are stored in $a0 and $a1 respectively, and their sizes (2500) stored in $a2 and $a3, respectively. In your comments, call the arrays Array1 and Array2.

(10 pts) In one sentence, what does this code compute and store in $v0?
(5 pts) Exercise 2-31

Suppose you are given the code for the following function:
```c
int function1(int a, int b);
```
Write MIPS code to call function1(3, 7) and then store the result in $s0

(5 pts) Exercise 2-32

Now you have this definition for function1:
```c
int function1(int a, int b) {
    return (a – b);
}
```
Write MIPS code to define function1.
(10 pts) Exercise 2-33

- Write MIPS code to define the following function:
  ```
  int cat(int a, int b) {
    if (a < b) {
      return a;
    } else {
      return b;
    }
  }
  ```
• Write the MIPS code to define the following function
 int function2(int g, int h)
 { return g + function1(g, h); }
(You will need to store something on the stack – why?)
(5 pts) Exercise 2-37

- Write the MIPS code to define the following function
  ```
  int function3(int a, int b)
  {
    return function6(a) + function7(b);
  }
  ```
(You will need to store something on the stack – why?)
(10 pts) Exercise 2-38

- Write the MIPS code to define the following function
  ```
  int lemur(int a, int b)
  {
      return panda(a) + b;
  }
  ```