IC220
Slide Set #7: Digital Logic
(more Appendix C)

DeMorgan’s Law and Bubble Pushing

\[\overline{A + B} = \overline{A} \cdot \overline{B} \]
\[\overline{A \cdot B} = \overline{A} + \overline{B} \]

Bubble Pushing Example

Representing Combinational Logic

Truth Table
Boolean Formula

Circuit

For combinational logic, these three:
- are equivalently _______________
- straight-forward to _______________
- have no _______________
2-Level Logic

- Represent ______ logic function(s)
 - Utilizing just two types of gates

 (assuming we get NOT for free)
 - Two forms
 - Sum of products
 - Product of sums
 - Relationship with truth table
 - Generate a gate level implementation of any set of logic functions
 - Allows for simple reduction/minimization

Example

- Show the sum of products for the following truth table.
- Strategy: _______ all the products where the output is _______

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Is this optimal?

Minimization by Hand

- Sum of Products:

z = (\overline{A} \cdot \overline{B} \cdot C) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot C)

- Okay to duplicate terms while minimizing
Karnaugh Maps (k-Maps)

- A graphical (pictorial) method used to minimize Boolean expressions.
- Don’t require the use of Boolean algebra theorems and equation manipulations.
- A special version of a truth table.
- Works with two to four input variables (gets more and more difficult with more variables)
- Groupings must be ____________________
- Final result is in ____________________ form

Karnaugh Maps (k-Maps) Example #1

- Lets create a k-map table
 - Borders represent all possible conditions
 - NOT in counting order
 - Be consistent
- What are the values for the map?
 - The values of ___
- To reduce, circle our powers of 2!

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[z = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} \]

Truth Table and Logical Circuit Example

- How does a truth table and subsequent sum of products equation create a logic circuit?
- From the earlier example:
 \[z = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} \]

- Lets build the logical circuit:
 - Which gates do we need?
 - How many inputs do we have?
 - How do we connect the circuit?

K-Maps Example #2

- Suppose we already have this k-Map. Minimize the function.

<table>
<thead>
<tr>
<th></th>
<th>(\overline{C})</th>
<th>(\overline{D})</th>
<th>(CD)</th>
<th>(C \overline{D})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{A} \overline{B})</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\overline{A} \overline{B})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(AB)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(A \overline{B})</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Every “1” must be ______________ by at least one term
- Larger blocks in k-Map produce smaller product terms
Example Circuit

$$z = \overline{A} \cdot C + \overline{B} \cdot C + \overline{A} \cdot \overline{B}$$

Don’t Cares

- Sometimes don’t care about the output.
- Each X can be either a 0 or 1 (helps with minimization)
- But in actual circuit, each X will have some specific value

<table>
<thead>
<tr>
<th>\overline{CD}</th>
<th>\overline{CD}</th>
<th>CD</th>
<th>\overline{CD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\overline{AB}</td>
<td>1</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>AB</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>\overline{AB}</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

General Skills

- Make sure you can populate a K-Map from a truth table
- Make sure you can populate a truth table from a K-Map
- Given a circuit, know how to construct a truth table
- Given a truth table, know how to produce a sum-of-products, and how to draw a circuit
- Be able to understand minimization and use it
- Know DeMorgan’s Law and other Boolean laws