An Arithmetic Logic Unit (ALU)

The ALU is the 'brawn' of the computer

- What does it do?
- How wide does it need to be?
- What outputs do we need for MIPS?
ALU Control and Symbol

<table>
<thead>
<tr>
<th>ALU Control Lines</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>AND</td>
</tr>
<tr>
<td>0001</td>
<td>OR</td>
</tr>
<tr>
<td>0010</td>
<td>Add</td>
</tr>
<tr>
<td>0110</td>
<td>Subtract</td>
</tr>
<tr>
<td>0111</td>
<td>Set on less than</td>
</tr>
<tr>
<td>1100</td>
<td>NOR</td>
</tr>
</tbody>
</table>

Multiplication

- More complicated than addition
 - accomplished via shifting and addition
- Example: grade-school algorithm

\[
\begin{array}{c}
0010 \quad \text{(multiplicand)} \\ \\ _ \times _{1011} \quad \text{(multiplier)}
\end{array}
\]

- Multiply \(m \times n \) bits, How wide (in bits) should the product be?
Using Multiplication

- Product requires 64 bits
 - Use dedicated registers
 - HI – more significant part of product
 - LO – less significant part of product

- MIPS instructions
 - `mult $s2, $s3`
 - `multu $s2, $s3`
 - `mfhi $t0`
 - `mflo $t1`

- Division
 - Can perform with same hardware! (see book)
 - `div $s2, $s3` \(Lo = \frac{s2}{s3} \)
 - `divu $s2, $s3` \(Hi = s2 \mod s3 \)

Floating Point

- We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., 0.000000001
 - very large numbers, e.g., 3.15576 \(\times \) 10^{23}

- Representation:
 - sign, exponent, significand:
 - \((-1)^{\text{sign}} \times \text{significand} \times 2^{\text{exponent(some power)}}\)
 - Significand always in normalized form:
 - Yes:
 - No:
 - more bits for significand gives more
 - more bits for exponent increases

IEEE754 Standard

Single Precision (float): 8 bit exponent, 23 bit significand

<table>
<thead>
<tr>
<th>S</th>
<th>Exponent (8 Bits)</th>
<th>Significand (23 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Double Precision (double): 11 bit exponent, 52 bit significand

<table>
<thead>
<tr>
<th>S</th>
<th>Exponent (11 Bits)</th>
<th>Significand (20 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>More Significand (32 more bits)</th>
</tr>
</thead>
</table>

IEEE 74 – Optimizations

- Significand
 - What’s the first bit?
 - So...

- Exponent is “biased” to make sorting easier
 - Smallest exponent represented by:
 - Largest exponent represented by:
 - Bias values
 - 127 for single precision
 - 1023 for double precision

- Summary: \((-1)^{\text{sign}} \times \text{significand} \times 2^{\text{exponent – bias}}\)
Example:

- Represent \(-9.75_{10}\) in binary, single precision form:

- Strategy
 - Transfer into binary notation (fraction)
 - Normalize significand (if necessary)
 - Compute exponent
 - \((\text{Real exponent}) = (\text{Stored exponent}) - \text{bias}\)
- Apply results to formula
 \((-1)^{\text{sign}} \times \text{significand}) \times 2^{\text{exponent} - \text{bias}}

Example continued:

Represent \(-9.75_{10}\) in binary single precision:

- Compute the exponent:
 - Remember \((2^{\text{exponent} - \text{bias}})\)
 - Bias = 127

- Formula
 \((-1)^{\text{sign}} \times \text{significand}) \times 2^{\text{exponent} - \text{bias}}

Floating Point Complexities

- Operations are somewhat more complicated (see text)
- In addition to overflow we can have “underflow”
- Accuracy can be a big problem
 - IEEE 754 keeps two extra bits, guard and round
 - four rounding modes
 - positive divided by zero yields “infinity”
 - zero divide by zero yields “not a number”
 - other complexities
- Implementing the standard can be tricky

MIPS Floating Point Basics

- Floating point registers
 \(f0, f1, f2, \ldots, f31\)
 Used in pairs for double precision \((f0, f1) (f2, f3), \ldots\)
 \(f0\) not always zero
- Register conventions:
 - Function arguments passed in
 - Function return value stored in
 - Where are addresses (e.g. for arrays) passed?
- Load and store:
 \(lwc1 \ f2, 0(\text{sp})\)
 \(swc1 \ f4, 4(\text{f2})\)
MIPS FP Arithmetic

- Addition, subtraction: `add.s`, `add.d`, `sub.s`, `sub.d`

  ```
  add.s $f1, $f2, $f3  
  add.d $f2, $f4, $f6  
  ```

- Multiplication, division: `mul.s`, `mul.d`, `div.s`, `div.d`

  ```
  mul.s $f2, $f3, $f4  
  div.s $f2, $f4, $f6  
  ```

MIPS FP Control Flow

- Pattern of a comparison: `c.___.s` (or `c.___.d`)

  ```
  c.lt.s $f2, $f3  
  c.ge.d $f4, $f6  
  ```

- Where does the result go?

- Branching:

  ```
  bc1t label10  
  bc1f label20  
  ```

Example #1

- Convert the following C code to MIPS:
  ```c
  float max (float A, float B) {
    if (A <= B) return A;
    else return B;
  }
  ```

Example #2

- Convert the following C code to MIPS:
  ```c
  void setArray (float F[], int index, float val) {
    F[index] = val;
  }
  ```
Chapter Three Summary

• Computer arithmetic is constrained by limited precision
• Bit patterns have no inherent meaning but standards do exist
 – two’s complement
 – IEEE 754 floating point
• Computer instructions determine “meaning” of the bit patterns
• Performance and accuracy are important so there are many complexities in real machines (i.e., algorithms and implementation).

• We are (almost!) ready to move on (and implement the processor)

Chapter Goals

• Introduce 2’s complement numbers
 – Addition and subtraction
 – Sketch multiplication, division
• Overview of ALU (arithmetic logic unit)
• Floating point numbers
 – Representation
 – Arithmetic operations
 – MIPS instructions