IC220 Set #18:
Storage and I/O

I/O

- Important but neglected
 “The difficulties in assessing and designing I/O systems have often relegated I/O to second class status”
 “courses in every aspect of computing, from programming to computer architecture often ignore I/O or give it scanty coverage”
 “textbooks leave the subject to near the end, making it easier for students and instructors to skip it!”

- GUILTY!
 — we won’t be looking at I/O in much detail
 — Later – IC322: Computer Networks

Outline

A. Overview
B. Physically connecting I/O devices to Processors and Memory
C. Interfacing I/O devices to Processors and Memory
D. Performance Measures
E. Disk details/RAID

Big Picture

![Diagram of processor, memory, I/O devices, and network connections.]
(A) I/O Overview

- Can characterize devices based on:
 1. behavior
 2. partner (who is at the other end?)
 3. data rate

- Performance factors:
 - access latency
 - throughput
 - connection between devices and the system
 - the memory hierarchy
 - the operating system

- Other issues:
 - Expandability, dependability

(B) Connecting the Processor, Memory, and other Devices

Two general strategies:
1. Bus: ____________ communication link

 Advantages:

 Disadvantages:

2. Point to Point Network: ____________ links
 Use switches to enable multiple connections

 Advantages:

 Disadvantages:

Typical x86 PC I/O System

(B) Bus Basics – Part 1

- Types of buses:
 - Processor-memory
 - Short, high speed, fixed device types
 - custom design
 - I/O
 - lengthy, different devices
 - Standards-based e.g., USB, Firewire
 - Connect to proc-memory bus rather than directly to processor

- Only one pair of devices (sender & receiver) may use bus at a time
 - Bus ____________ decides who gets the bus next based on some ____________ strategy
 - May incorporate priority, round-robin aspects

- Have two types of signals:
 - “Data” – data or address
 - Control
I/O Bus Examples

<table>
<thead>
<tr>
<th>Firewire</th>
<th>USB 2.0</th>
<th>PCI Express</th>
<th>Serial ATA</th>
<th>Serial Attached SCSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intended use</td>
<td>External</td>
<td>External</td>
<td>Internal</td>
<td>Internal</td>
</tr>
<tr>
<td>Devices per channel</td>
<td>63</td>
<td>127</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Data width</td>
<td>4</td>
<td>2</td>
<td>2/lane</td>
<td>4</td>
</tr>
<tr>
<td>Peak bandwidth</td>
<td>50MB/s or 100MB/s</td>
<td>0.2MB/s</td>
<td>1.5MB/s or 60MB/s</td>
<td>250MB/s</td>
</tr>
<tr>
<td>Hot pluggable</td>
<td>Yes</td>
<td>Yes</td>
<td>Depends</td>
<td>Yes</td>
</tr>
<tr>
<td>Max length</td>
<td>4.5m</td>
<td>5m</td>
<td>0.5m</td>
<td>1m</td>
</tr>
<tr>
<td>Standard</td>
<td>IEEE 1394</td>
<td>USB Implementers Forum</td>
<td>PCI-SIG</td>
<td>SATA-IO</td>
</tr>
</tbody>
</table>

(B) Bus Basics – Part 2

- Clocking scheme:
 1. Use a clock, signals change only on clock edge
 + Fast and small
 - All devices must operate at same rate
 - Requires bus to be short (due to clock skew)
 2. No clock, instead use “handshaking”
 + Longer buses possible
 + Accommodate wide range of device
 - more complex control

(C) Processor-to-device Communication

How does CPU send information to a device?
1. Special I/O instructions
 x86: inb / outb

 How to control access to I/O device?

2. Use normal load/instructions to special addresses
 Called ___________
 Load/store put onto bus
 Memory ignores them (outside its range)
 Address may encode both device ID and a command

 How to control access to I/O device?

(C) Device-to-processor communication

How does device get data to the processor?
1. CPU periodically checks to see if device is ready: _____________
 - CPU sends request, keep checking if done
 - Or just checks for new info (mouse, network)

2. Device forces action by the processor when needed: _____________
 - Like an unscheduled procedure call
 - Same as “exception” mechanism that handles TLB misses, divide by zero, etc.

3. DMA:
 - Device sends data directly to memory w/o CPU’s involvement
 - Interrupts CPU when transfer is complete
DMA Issues

What could go wrong?

(D) I/O’s impact on performance

• Total time = CPU time + I/O time

• Suppose our program is 90% CPU time, 10% I/O. If we improve CPU performance by 10x, but leave I/O unchanged, what will the new performance be?

• Old time = 100 seconds
• New time =

(E) Disk Drives

• To access data:
 — seek: position head over the proper track (3 to 14 ms. avg.)
 — rotational latency: wait for desired sector (.5 / RPM)
 — transfer: grab the data (one or more sectors) 30 to 80 MB/sec

Flash Storage – alternative to spinning hard disk

• Nonvolatile semiconductor storage
 — 100x – 1000x faster than disk
 — Smaller, lower power, more robust
 — But more $/GB (between disk and DRAM)

• Flash bits wears out after 1000’s of writes
 — Not suitable for direct RAM or disk replacement
 — Wear leveling: remap data to less used blocks
 — Result: “solid-state hard drive”