An Arithmetic Logic Unit (ALU)

The ALU is the ‘brawn’ of the computer

- What does it do?
- How wide does it need to be?
- What outputs do we need for MIPS?

A simple 32-bit ALU

ADMIN

- Read pages 211-215 (MIPS floating point instructions)
- Read 3.9
ALU Control and Symbol

<table>
<thead>
<tr>
<th>ALU Control Lines</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>AND</td>
</tr>
<tr>
<td>0001</td>
<td>OR</td>
</tr>
<tr>
<td>0010</td>
<td>Add</td>
</tr>
<tr>
<td>0110</td>
<td>Subtract</td>
</tr>
<tr>
<td>0111</td>
<td>Set on less than</td>
</tr>
<tr>
<td>1100</td>
<td>NOR</td>
</tr>
</tbody>
</table>

Multiplication

- More complicated than addition

 - accomplished via shifting and addition
- Example: grade-school algorithm

\[
\begin{align*}
 \text{0010 (multiplicand)}
 \times \text{1011 (multiplier)}
\end{align*}
\]

- Multiply \(m \times n \) bits, How wide (in bits) should the product be?

Multiplication: Simple Implementation
Using Multiplication

- Product requires 64 bits
 - Use dedicated registers
 - HI – more significant part of product
 - LO – less significant part of product
- MIPS instructions
 - `mult $s2, $s3`
 - `multu $s2, $s3`
 - `mfhi $t0`
 - `mflo $t1`
- Division
 - Can perform with same hardware! (see book)
 - `div $s2, $s3`
 - `divu $s2, $s3`

Floating Point

- We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., .000000001
 - very large numbers, e.g., \(3.15576 \times 10^{23}\)
- Representation:
 - sign, exponent, significand:
 - \((-1)^{\text{sign}} \times \text{significand} \times 2^{\text{exponent(some power)}}\)
 - Significand always in normalized form:
 - Yes:
 - No:
 - more bits for significand gives more
 - more bits for exponent increases

IEEE754 Standard

<table>
<thead>
<tr>
<th>Single Precision (float): 8 bit exponent, 23 bit significand</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
</tr>
<tr>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Double Precision (double): 11 bit exponent, 52 bit significand</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
</tr>
<tr>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>More Significand (32 more bits)</th>
</tr>
</thead>
</table>

IEEE 74 – Optimizations

- Significand
 - What’s the first bit?
 - So...
- Exponent is “biased” to make sorting easier
 - Smallest exponent represented by:
 - Largest exponent represented by:
- Bias values
 - 127 for single precision
 - 1023 for double precision
- Summary: \((-1)^{\text{sign}} \times \text{significand} \times 2^{\text{exponent} - \text{bias}}\)
Example:

- Represent -9.75\text{_{10}} in binary, single precision form:

 - Strategy
 - Transfer into binary notation (fraction)
 - Normalize significand (if necessary)
 - Compute exponent
 - (Real exponent) = (Stored exponent) - bias
 - Apply results to formula
 \((-1)^{\text{sign}} \times \text{significand}) \times 2^{\text{exponent} - \text{bias}}

Example continued:

Represent -9.75\text{_{10}} in binary single precision:

 - Compute the exponent:
 - Remember \((2^{\text{exponent} - \text{bias}})\)
 - Bias = 127

Floating Point Complexities

- Operations are somewhat more complicated (see text)
- In addition to overflow we can have “underflow”
- Accuracy can be a big problem
 - IEEE 754 keeps two extra bits, guard and round
 - four rounding modes
 - positive divided by zero yields “infinity”
 - zero divide by zero yields “not a number”
 - other complexities
- Implementing the standard can be tricky

MIPS Floating Point Basics

- Floating point registers
 \$f0, \$f1, \$f2, ..., \$f31
 Used in pairs for double precision (f0, f1) (f2, f3), ...
 \$f0 not always zero

- Register conventions:
 - Function arguments passed in
 - Function return value stored in
 - Where are addresses (e.g. for arrays) passed?

- Load and store:
 lwc1 \$f2, 0(\$sp)
 swc1 \$f4, 4(\$t2)
MIPS FP Arithmetic

- Addition, subtraction: add.s, add.d, sub.s, sub.d

 add.s $f1, $f2, $f3
 add.d $f2, $f4, $f6

- Multiplication, division: mul.s, mul.d, div.s, div.d

 mul.s $f2, $f3, $f4
 div.s $f2, $f4, $f6

MIPS FP Control Flow

- Pattern of a comparison: c.____.s (or c.____.d)

 c.lt.s $f2, $f3
 c.gs.d $f4, $f6

- Where does the result go?

 Branching:

 bc1t label10
 bc1f label20

Example #1

- Convert the following C code to MIPS:

 float max (float A, float B) {
 if (A <= B) return A;
 else return B;
 }

Example #2

- Convert the following C code to MIPS:

 void setArray (float F[], int index, float val) {
 F[index] = val;
 }
Chapter Three Summary

- Computer arithmetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
 - two’s complement
 - IEEE 754 floating point
- Computer instructions determine “meaning” of the bit patterns
- Performance and accuracy are important so there are many complexities in real machines (i.e., algorithms and implementation).

- We are (almost!) ready to move on (and implement the processor)

Chapter Goals

- Introduce 2’s complement numbers
 - Addition and subtraction
 - Sketch multiplication, division
- Overview of ALU (arithmetic logic unit)
- Floating point numbers
 - Representation
 - Arithmetic operations
 - MIPS instructions