SI232 – Homework #3 (Chapter 3)

Due: Wed March 1, 2006

Problem numbers refer to the text, 3rd edition.

NOTE: You could use a calculator to help with the first four problems. However, all of these are small enough that you should be able to do this by hand on a quiz/test, where calculators are not permitted. Show your work.

A. (15 pts) Convert 257_{10} into:
 1. a 32-bit two’s complement binary number.
 2. a single precision floating point number (show result in binary)

B. (10 pts) Convert -511_{10} into a 32-bit two’s complement binary number.

C. (10 pts) Problem 3.4 from text

D. (10 pts) Problem 3.5 from text

E. (10 pts) Suppose we use 8 bits to represent a two’s complement binary number. What are the largest and smallest numbers that can be represented? (give your answers as decimal numbers)

F. (20 pts) Convert the following C code into MIPS. A C float is stored as a MIPS single precision floating point value.

```c
float dotproduct (float A[], float B[]) {
    float sum = A[0] * B[0];
    int ii;
    for (ii = 1; ii < 20; ii++) {
        sum = sum + A[ii] * B[ii];
    }
    return sum;
}
```

G. (15 pts) Convert the following C code into MIPS. Argument ‘x’ is passed in register $f12$ and ‘y’ is passed in register $f14$.

```c
float function2 (float x, float y) {
    if (x > y)
        return x + y;
    else
        return x - y;
}
```

H. (EXTRA CREDIT - max 10 pts) Problem 3.7 from text – This is asking you to convert the pseudo instruction “abs $t2, $t3” into a sequence of real MIPS instructions. The best solution will have only three instructions (some of which may be pseudoinstructions themselves), but partial credit for longer sequences.