• Reading – Chapter 8
 – Including RAID (8.2) but don’t stress memorizing the levels
 – Can skip 8.8

• Important but neglected

“The difficulties in assessing and designing I/O systems have often relegated I/O to second class status”

“courses in every aspect of computing, from programming to computer architecture often ignore I/O or give it scanty coverage”

“textbooks leave the subject to near the end, making it easier for students and instructors to skip it!”

• GUILTY!

— we won’t be looking at I/O in much detail
— be sure and read Chapter 8 carefully
— Later – SI454: Computer Networks
Outline

A. Overview
B. Physically connecting I/O devices to Processors and Memory (8.4)
C. Interfacing I/O devices to Processors and Memory (8.5)
D. Performance Measures (8.6)
E. Disk details/RAID (8.2)

(A) I/O Overview

- Can characterize devices based on:
 1. behavior
 2. partner (who is at the other end?)
 3. data rate

- Performance factors:
 - access latency
 - throughput
 - connection between devices and the system
 - the memory hierarchy
 - the operating system

- Other issues:
 - Expandability, dependability

(B) Connecting the Processor, Memory, and other Devices

Two general strategies:
1. Bus: ___________ communication link
 - Advantages:
 - Disadvantages:

2. Point to Point Network: ___________ links
 - Use switches to enable multiple connections
 - Advantages:
 - Disadvantages:

(B) Bus Basics – Part 1

- Types of buses:
 - Process-memory
 - Short, high speed, fixed device types
 - custom design
 - I/O
 - lengthy, different devices
 - Standards-based e.g., USB, Firewire
 - Connect to proc-memory bus rather than directly to process

- Only one pair of devices (sender & receiver) may use bus at a time
 - Bus ___________ decides who gets the bus next based on
 some ___________ strategy
 - May incorporate priority, round-robin aspects

- Have two types of signals:
 - “Data” – data or address
 - Control
I/O Bus Standards

Today we have two dominant I/O bus standards:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>FireWire (1.3M)</th>
<th>USB 2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus type</td>
<td>1/0</td>
<td>1/0</td>
</tr>
<tr>
<td>Parallel-data bus width</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Clocking</td>
<td>asynchronous</td>
<td>asynchronous</td>
</tr>
<tr>
<td>Theoretical peak bandwidth</td>
<td>50 MB/sec (Firewire 400) or 100 MB/sec (Firewire 100)</td>
<td>0.2 MB/sec (low speed), 1.6 MB/sec (full speed), or 40 MB/sec (high speed)</td>
</tr>
<tr>
<td>Hot pluggable</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Maximum number of devices</td>
<td>62</td>
<td>127</td>
</tr>
<tr>
<td>Maximum bus length</td>
<td>0.5 meters</td>
<td>5 meters</td>
</tr>
<tr>
<td>Standard name</td>
<td>IEEE 1394, 1394b</td>
<td>USB implementers Forum</td>
</tr>
</tbody>
</table>

FIGURE 8.9 Key characteristics of two dominant I/O bus standards.

(B) Bus Basics – Part 2

Clocking scheme:

1. Use a clock, signals change only on clock edge
 + Fast and small
 - All devices must operate at same rate
 - Requires bus to be short (due to clock skew)

2. No clock, instead use “handshaking”
 + Longer buses possible
 + Accommodate wide range of device
 - more complex control

(C) Processor-to-device Communication

How does CPU send information to a device?

1. Special I/O instructions
 x86: inb / outb
 How to control access to I/O device?

2. Use normal load/instructions to special addresses
 Called ______________________
 Load/store put onto bus
 Memory ignores them (outside its range)
 Address may encode both device ID and a command
 How to control access to I/O device?
(C) Device-to-processor communication

How does device get data to the processor?
1. CPU periodically checks to see if device is ready: _________________
 • CPU sends request, keep checking if done
 • Or just checks for new info (mouse, network)

2. Device forces action by the processor when needed: _________________
 • Like an unscheduled procedure call
 • Same as “exception” mechanism that handles TLB misses, divide by zero, etc.

3. DMA:
 • Device sends data directly to memory w/o CPU’s involvement
 • Interrupts CPU when transfer is complete

(D) I/O’s impact on performance

• Total time = CPU time + I/O time
• Suppose our program is 90% CPU time, 10% I/O. If we improve CPU performance by 10x, but leave I/O unchanged, what will the new performance be?
 • Old time = 100 seconds
 • New time =

(D) Measuring I/O Performance

• Latency?
• Throughput?
• Throughput with maximum latency?
• Transaction processing benchmarks
 – TPC-C
 – TPC-H
 – TPC-W

• File system / Web benchmarks
 – “Make” benchmark
 – SPECSFS
 – SPECWeb
(E) Disk Drives

- To access data:
 - seek: position head over the proper track (3 to 14 ms. avg.)
 - rotational latency: wait for desired sector (.5 / RPM)
 - transfer: grab the data (one or more sectors) 30 to 80 MB/sec

(E) RAID

- Idea: lots of cheap, smaller disks
- Small size and cost makes easier to add redundancy
- Multiple disks increases read/write bandwidth

RAID

RAID 0 – "striping", no redundancy

<table>
<thead>
<tr>
<th>Disk 0</th>
<th>Disk 1</th>
<th>Disk 2</th>
<th>Disk 3</th>
<th>Disk 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1</td>
<td>Block 2</td>
<td>Block 3</td>
<td>Block 4</td>
<td>Block 5</td>
</tr>
<tr>
<td>Block 6</td>
<td>Block 7</td>
<td>Block 8</td>
<td>Block 9</td>
<td>Block 10</td>
</tr>
<tr>
<td>Block 11</td>
<td>Block 12</td>
<td>Block 13</td>
<td>Block 14</td>
<td>Block 15</td>
</tr>
<tr>
<td>Block 16</td>
<td>Block 17</td>
<td>Block 18</td>
<td>Block 19</td>
<td>Block 20</td>
</tr>
</tbody>
</table>

RAID 1 – mirrored

<table>
<thead>
<tr>
<th>Disk 0</th>
<th>Disk 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1</td>
<td>Block 2</td>
</tr>
<tr>
<td>Block 3</td>
<td>Block 4</td>
</tr>
<tr>
<td>Block 5</td>
<td>Block 6</td>
</tr>
<tr>
<td>Block 7</td>
<td>Block 8</td>
</tr>
<tr>
<td>Block 9</td>
<td>Block 10</td>
</tr>
</tbody>
</table>

RAID 4 – Block-interleaved parity

<table>
<thead>
<tr>
<th>Disk 0</th>
<th>Disk 1</th>
<th>Disk 2</th>
<th>Disk 3</th>
<th>Disk 4</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black 1</td>
<td>Black 2</td>
<td>Black 3</td>
<td>Black 4</td>
<td>Black 5</td>
<td>Parity 1</td>
</tr>
<tr>
<td>Black 6</td>
<td>Black 7</td>
<td>Black 8</td>
<td>Black 9</td>
<td>Black 10</td>
<td>Parity 2</td>
</tr>
<tr>
<td>Black 11</td>
<td>Black 12</td>
<td>Black 13</td>
<td>Black 14</td>
<td>Black 15</td>
<td>Parity 3</td>
</tr>
<tr>
<td>Black 16</td>
<td>Black 17</td>
<td>Black 18</td>
<td>Black 19</td>
<td>Black 20</td>
<td>Parity 4</td>
</tr>
</tbody>
</table>

RAID 5 – Distributed Block-interleaved Parity

<table>
<thead>
<tr>
<th>Disk 0</th>
<th>Disk 1</th>
<th>Disk 2</th>
<th>Disk 3</th>
<th>Disk 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black 1</td>
<td>Black 2</td>
<td>Black 3</td>
<td>Black 4</td>
<td>Black 5</td>
</tr>
<tr>
<td>Black 6</td>
<td>Black 7</td>
<td>Black 8</td>
<td>Black 9</td>
<td>Black 10</td>
</tr>
<tr>
<td>Black 11</td>
<td>Black 12</td>
<td>Parity 7</td>
<td>Black 13</td>
<td>Black 14</td>
</tr>
<tr>
<td>Black 15</td>
<td>Parity 15</td>
<td>Black 16</td>
<td>Black 17</td>
<td>Black 18</td>
</tr>
</tbody>
</table>
RAID

RAID 10 – Striped mirrors

- Key point – still need to do other backups (e.g. to tape)
 - Provides protection from limited number of disk failures
 - No protection from human failures!

Fallacies and Pitfalls

- Fallacy: the rated mean time to failure of disks is 1,200,000 hours, so disks practically never fail.

- Fallacy: magnetic disk storage is on its last legs, will be replaced.

- Fallacy: A 100 MB/sec bus can transfer 100 MB/sec.

- Pitfall: Moving functions from the CPU to the I/O processor, expecting to improve performance without analysis.