Set 5
Using Naïve Bayes
Motivation

• We want to predict *something*.
• We have some *text* related to this *something*.

• *something* = target label Y
• *text* = text features X

Given X, what is the most probable Y?
Motivation: Author Detection

X = Alas the day! take heed of him; he stabbed me in mine own house, and that most beastly: in good faith, he cares not what mischief he does. If his weapon be out: he will foin like any devil; he will spare neither man, woman, nor child.

Y = \{ Charles Dickens, William Shakespeare, Herman Melville, Jane Austin, Homer, Leo Tolstoy \}

\[
Y \leftarrow \arg \max_{y_k} P(Y = y_k)P(X | Y = y_k)
\]
More Motivation

\[P(Y=\text{spam} \mid X=\text{email}) \]
\[P(Y=\text{worthy} \mid X=\text{review sentence}) \]

Apply for Credit Cards - 0% Interest Cards, No Annual Fees

- **Annapolis Ice Cream Company**
 - 196 Main St
 - Annapolis, MD 21401
 - (443) 482-3890
 - 104 reviews
 - $ - Ice Cream & Frozen Yogurt
 - I had salted caramel and peanut butter crep in a waffle cone.

- **Third Eye Comics**
 - 2027-A W St
 - Annapolis, MD 21401
 - (410) 697-0322
 - 41 reviews
 - $ - Comic Books, Toy Stores, Hobby Shops
 - Steve and his staff are among the coolest people I have ever met.

- **Sin Fronteras Cafe**
 - 2129 Forest Dr
 - Annapolis, MD 21401
 - (410) 266-0013
 - 101 reviews
 - $5 - Latin American, Mexican
 - I opted for the Ropa Vieja, which was seasoned to perfection.
The Naïve Bayes Classifier

- Recall Bayes rule: \[P(Y_i \mid X_j) = \frac{P(Y_i)P(X_j \mid Y_i)}{P(X_j)} \]

- Which is short for:
 \[P(Y = y_i \mid X = x_j) = \frac{P(Y = y_i)P(X = x_j \mid Y = y_i)}{P(X = x_j)} \]

- We can re-write this as:
 \[P(Y = y_i \mid X = x_j) = \frac{P(Y = y_i)P(X = x_j \mid Y = y_i)}{\sum_k P(X = x_j \mid Y = y_k)P(Y = y_k)} \]
Deriving Naïve Bayes

• Idea: use the training data to directly estimate:

\[P(X \mid Y) \quad \text{and} \quad P(Y) \]

• We can use these values to estimate using Bayes rule.

\[P(Y \mid X_{\text{new}}) \]

• Recall that representing the full joint probability is not practical.

\[P(X \mid Y) = P(X_1, X_2, \ldots, X_n \mid Y) \]
Deriving Naïve Bayes

• However, if we make the assumption that the attributes are independent, estimation is easy!

\[P(X_1, \ldots, X_n \mid Y) = \prod_{i} P(X_i \mid Y) \]

• In other words, we assume all attributes are conditionally independent given \(Y \).
 • Often this assumption is violated in practice, but more on that later…
Deriving Naïve Bayes

- Let \(X = \langle X_1, \ldots, X_n \rangle \) and label \(Y \) be discrete.

- Then, we can estimate \(P(X_i \mid Y_i) \) and \(P(Y_i) \) directly from the training data by counting!

<table>
<thead>
<tr>
<th>Sky</th>
<th>Temp</th>
<th>Humid</th>
<th>Wind</th>
<th>Water</th>
<th>Forecast</th>
<th>Play?</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>warm</td>
<td>normal</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>warm</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>cold</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>change</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>warm</td>
<td>high</td>
<td>strong</td>
<td>cool</td>
<td>change</td>
<td>yes</td>
</tr>
</tbody>
</table>

\[P(\text{Sky} = \text{sunny} \mid \text{Play} = \text{yes}) = ? \quad P(\text{Humid} = \text{high} \mid \text{Play} = \text{yes}) = ? \]
The Naïve Bayes Classifier

• Now we have:

\[
P(Y = y_j \mid X_1, \ldots, X_n) = \frac{P(Y = y_j) \prod_i P(X_i \mid Y = y_j)}{\sum_k P(Y = y_k) \prod_i P(X_i \mid Y = y_k)}
\]

• To classify a new point \(X_{\text{new}}\):

\[
Y_{\text{new}} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i \mid Y = y_k)
\]
The Naïve Bayes Algorithm

- For each value y_k
 - Estimate $P(Y = y_k)$ from the data.
 - For each value x_{ij} of each attribute X_i
 - Estimate $P(X_i=x_{ij} \mid Y = y_k)$
- Classify a new point via:

$$Y_{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_{i} P(X_i \mid Y = y_k)$$

- In practice, the independence assumption doesn’t often hold true, but Naïve Bayes performs very well despite it.
An alternate view of NB as LMs

<table>
<thead>
<tr>
<th>Y1 = dickens</th>
<th>Y2 = twain</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(Y1) \times P(X</td>
<td>Y1)$</td>
</tr>
<tr>
<td>$P(X</td>
<td>Y1) = P_{Y1}(X)$</td>
</tr>
<tr>
<td>Bigrams: $P_{Y1}(X) = \prod P_{Y1}(x_i</td>
<td>x_{i-1})$</td>
</tr>
</tbody>
</table>
Naïve Bayes Applications

• Text classification
 • Which e-mails are spam?
 • Which e-mails are meeting notices?
 • Which author wrote a document?
 • Which webpages are about current events?
 • Which blog contains angry writing?
 • What sentence in a document talks about company X?
 • etc.
Text and Features

\[P(X_1, \ldots, X_n \mid Y) = \prod_i P(X_i \mid Y) \]

• What is \(X_i \)?
 • Could be unigrams, hopefully bigrams too.

• It can be \textit{anything} that is computed from the text \(X \).
 • Yes, I really mean anything. Creativity and intuition into language is where the real gains come from in NLP.

• Non n-gram examples:
 • \(X_{10} \) = “the number of sentences that begin with conjunctions”
 • \(X_{356} \) = “existence of a semi-colon in the paragraph”
Features

• In machine learning, “features” are the attributes to which you assign weights (probabilities in Naïve Bayes) that help in the final classification.

• Up until now, your features have been n-grams. You now want to consider other types of features.
 • You count features just like n-grams. How many did you see?

• $X =$ set of features
• $P(Y|X) =$ probability of a Y given a set of features
How do you count features?

• Feature idea: “a semicolon exists in this sentence”

• Count them:
 • Count(“FEAT-SEMICOLON”, 1)
 • *Make up a unique name for the feature, then count!*

• Compute probability:
 • \[P(\text{“FEAT-SEMICOLON” | author=“dickens”}) = \frac{\text{Count(“FEAT-SEMICOLON”)}}{(\# \text{ dickens sentences})} \]
Authorship Lab

1. Figure out how to use your Language Models from Lab 2. They can be your initial features.
 - Can you train() a model on one author’s text?

2. \[P(\text{dickens} \mid \text{text}) = P(\text{dickens}) \times P_{\text{BigramModel}}(\text{text}) \]

3. New code for new features. Call your language models, get a probability, and then multiply new feature probabilities.