Bootstrapping ... a walk through example.

Goal: company-product pairs

Start with: “Apple” and “iphone”

1. Count **patterns** containing your word pair:

 Apple announces press conference for **iPhone**
 Apple said for months they got something dope planned for the **iphone**
 Apple **iPhone** review
 Apple’s First **iPhone** Ad
 Apple Launches **iPhone**

2. Sort observed patterns by **raw frequency** (we'll do this better later):

 84 X Y review
 23 X Launches Y
 8 X ’s First Y Ad
 4 X announces press conference for Y
 1 X said for months they got something dope planned for the Y

3. Search for word pairs with the top n patterns (often n=1)

 X Y review → (steel, watch), (the, month), (outdoor, green), (prom, dresses)
 X launches Y → (hammer, new), (signature, new), (greenpeace, a)
 X 's first Y ad → (GB, title), (year, real), (Asia Pacific, blog)

4. These word pairs are terrible.
 The best pattern “X Y review” doesn't match companies and products, but strings like “the year end review” or “top software review”. Why? **Raw frequency is not a good metric.**

5. Use different patterns, sorted by pointwise mutual information:

 \[
 \text{pmi}(“X Y review”, apple/iphone) = \frac{P(“X Y review”, apple/iphone)}{P(“X Y review”)*P(apple/iphone)}
 \]

 Note that “X Y review” is frequent, so the denominator will have a large P(“X Y review”). The pattern “X's first Y ad” will be smaller. PMI thus boosts good patterns that **match your relation** (numerator) but most importantly, that **do not match other relations** (denominator).

 9.1 X ’s First Y Ad
 8.5 X announces press conference for Y
 8.0 X Launches Y
 5.4 X Y review
6. Search for new word pairs with the top **pmi patterns**. Sort by **PMI again!**

\[
\text{pmi}(\text{wordpair, patterns}) = \frac{P(\text{wordpair, patterns})}{P(\text{wordpair})\times P(\text{patterns})}
\]

<table>
<thead>
<tr>
<th>PMI</th>
<th>Word Pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>(microsoft, windows)</td>
</tr>
<tr>
<td>6.9</td>
<td>(google, maps)</td>
</tr>
<tr>
<td>6.8</td>
<td>(apple, ipad)</td>
</tr>
<tr>
<td></td>
<td>etc.</td>
</tr>
</tbody>
</table>

7. Integrate a “coverage” score as a complementary metric.

\[
\text{coverage} = \frac{\text{the fraction of patterns a word pair matched}}{
\]

If you learned 10 patterns, and you extracted (apple, ipad) as a potential pair, how many of the 10 patterns did the pair occur with? If it matched 8 of 10, then coverage = 0.8.

A pair like (prom, dresses) will match many times to a pattern like “X Y review”, but it won’t match the other 9 patterns. This means its PMI score will be very high, due to lots of matches, but the coverage is very low showing lack of diversity.

New Metric: \(x\times\text{PMI} + (1-x)\times\text{coverage}\)

New Filter: \(\text{PMI} > \text{minPMI} \&\& \text{Coverage} > \text{minCoverage}\)

8. **Cautious learning.**

Learn 1 or 2 patterns at a time at most, then learn 1 or 2 word pairs at most. Add them to your learned set, and repeat. This lets you learn high precision terms early, and then cautiously expand your knowledge.

9. **Noun phrases.**

Match bigrams or longer, not just unigrams. Use a tagger to identify names and organizations. Throw out parts of speech like determiners. Etc….