Module 4: Dictionaries and Balanced Search Trees

CS 240 - Data Structures and Data Management

Reza Dorrigiv, Daniel Roche

School of Computer Science, University of Waterloo

Winter 2010
Dictionary ADT

A dictionary is a collection of items, each of which contains a key and some data and is called a key-value pair (KVP). Keys can be compared and are typically unique.

Operations:
- `search(k)`
- `insert(k, v)`
- `delete(k)`
- optional: `join`, `isEmpty`, `size`, etc.

Examples: symbol table, license plate database
Elementary Implementations

Common assumptions:

- Dictionary has \(n \) KVPs
- Each KVP uses constant space
 (if not, the “value” could be a pointer)
- Comparing keys takes constant time

Unordered array or linked list

- \textit{search} \(\Theta(n) \)
- \textit{insert} \(\Theta(1) \)
- \textit{delete} \(\Theta(1) \) (after a search)

Ordered array or linked list

- \textit{search} \(\Theta(\log n) \)
- \textit{insert} \(\Theta(n) \)
- \textit{delete} \(\Theta(n) \)
Binary Search Trees (review)

Structure A BST is either empty or contains a KVP, left child BST, and right child BST.

Ordering Every key k in $T.left$ is less than the root key. Every key k in $T.right$ is greater than the root key.

![Binary Search Tree Diagram]
BST Search and Insert

\textit{search}(k) \hspace{2pt} \text{Compare } k \text{ to current node, stop if found, else recurse on subtree unless it’s empty}

Example: \textit{search}(24)

\begin{center}
\begin{tikzpicture}
 \node (root) {15}
 \child{node (left) {6}
 \child{node (left_left) {10}
 \child{node (left_left_left) {8}}
 \child{node (left_left_right) {14}}
 }
 \child{node (left_right) {23}
 \child{node (left_right_left) {27}}
 \child{node (left_right_right) {29}}
 }
 }
 \child{node (right) {25}
 \child{node (right_right) {29}}
 \child{node (right_right_right) {50}}
 }
\end{tikzpicture}
\end{center}
BST Search and Insert

\[\text{search}(k)\] Compare \(k\) to current node, stop if found, else recurse on subtree unless it’s empty

Example: \(\text{search}(24)\)
BST Search and Insert

search(\(k\)) Compare \(k\) to current node, stop if found, else recurse on subtree unless it’s empty

Example: *search*(24)
BST Search and Insert

`search(k)` Compare `k` to current node, stop if found, else recurse on subtree unless it’s empty

Example: `search(24)`
BST Search and Insert

search(\(k\)) Compare \(k\) to current node, stop if found, else recurse on subtree unless it’s empty

insert(\(k, v\)) Search for \(k\), then insert \((k, v)\) as new node

Example: *insert*(24, \(\ldots\))
BST Delete

- If node is a leaf, just delete it.
BST Delete

- If node is a leaf, just delete it.
BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
 BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with successor node and then delete
BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with successor node and then delete
BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with *successor* node and then delete
Height of a BST

search, insert, delete all have cost $\Theta(h)$, where $h = \text{height of the tree} = \text{max. path length from root to leaf}$

If n items are inserted one-at-a-time, how big is h?

- Worst-case:
Height of a BST

search, insert, delete all have cost $\Theta(h)$, where $h =$ height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?

- Worst-case: $n - 1 = \Theta(n)$
- Best-case:
Height of a BST

search, insert, delete all have cost $\Theta(h)$, where $h = \text{height of the tree} = \text{max. path length from root to leaf}$

If n items are **inserted** one-at-a-time, how big is h?

- **Worst-case:** $n - 1 = \Theta(n)$
- **Best-case:** $\lg(n + 1) - 1 = \Theta(\log n)$
- **Average-case:**
Height of a BST

search, insert, delete all have cost $\Theta(h)$, where

$h =$ height of the tree $=$ max. path length from root to leaf

If n items are *inserted* one-at-a-time, how big is h?

- **Worst-case:** $n - 1 = \Theta(n)$
- **Best-case:** $\lg(n + 1) - 1 = \Theta(\log n)$
- **Average-case:** $\Theta(\log n)$
 (just like recursion depth in *quick-sort*1)
AVL Trees

Introduced by Adel’son-Vel’skiǐ and Landis in 1962, an AVL Tree is a BST with an additional structural property: The heights of the left and right subtree differ by at most 1. (The height of an empty tree is defined to be −1.)

At each non-empty node, we store $\text{height}(R) - \text{height}(L) \in \{-1, 0, 1\}$:

- -1 means the tree is left-heavy
- 0 means the tree is balanced
- 1 means the tree is right-heavy
AVL Trees

Introduced by Adel’son-Vel’skiï and Landis in 1962, an AVL Tree is a BST with an additional structural property: The heights of the left and right subtree differ by at most 1. (The height of an empty tree is defined to be −1.)

At each non-empty node, we store $\text{height}(R) - \text{height}(L) \in \{-1, 0, 1\}$:

- $−1$ means the tree is left-heavy
- 0 means the tree is balanced
- 1 means the tree is right-heavy

Why not just store the actual height?
AVL Trees

Introduced by Adel’son-Vel’skiĭ and Landis in 1962, an AVL Tree is a BST with an additional structural property: The heights of the left and right subtree differ by at most 1.

(The height of an empty tree is defined to be −1.)

At each non-empty node, we store $\text{height}(R) - \text{height}(L) \in \{-1, 0, 1\}$:

- -1 means the tree is left-heavy
- 0 means the tree is balanced
- 1 means the tree is right-heavy

Why not just store the actual height? It would take $\Theta(n \log \log n)$ space.
AVL insertion

To perform $\text{insert}(T, k, v)$:

- First, insert (k, v) into T using usual BST insertion
- Then, move up the tree from the new leaf, updating balance factors.
- If the balance factor is -1, 0, or 1, then keep going.
- If the balance factor is ± 2, then call the fix algorithm to “rebalance” at that node.
How to “fix” an unbalanced AVL tree

Goal: change the *structure* without changing the *order*

Notice that if heights of A, B, C, D differ by at most 1, then the tree is a proper AVL tree.
Right Rotation

This is a *right rotation* on node z:

```
   z
  / 
 y   D
 |   
 x   C
|   |   
A   B
```

```
   y
  / 
 x   z
 |   |
 A   B
|   |   
C   D
```

Note: Only two edges need to be moved, and two balances updated.
Right Rotation

This is a *right rotation* on node z:

![Diagram of right rotation]

Note: Only two edges need to be moved, and two balances updated.
Left Rotation

This is a *left rotation* on node x:

Again, only two edges need to be moved and two balances updated.
Double Right Rotation

This is a *double right rotation* on node z:

First, a left rotation on the left subtree (x).
Double Right Rotation

This is a *double right rotation* on node z:

![Diagram of the double right rotation]

First, a left rotation on the left subtree (x).
Second, a right rotation on the whole tree (z).
Double Left Rotation

This is a *double left rotation* on node x:

Right rotation on right subtree (z), followed by left rotation on the whole tree (x).
Fixing a slightly-unbalanced AVL tree

Idea: Identify one of the previous 4 situations, apply rotations

\[
\text{fix}(T) \\
T: \text{AVL tree with } T.balance = \pm 2 \\
1. \quad \text{if } T.balance = -2 \text{ then} \\
2. \quad \text{if } T.left.balance = 1 \text{ then} \\
3. \quad \text{rotate-left}(T.left) \\
4. \quad \text{rotate-right}(T) \\
5. \quad \text{else if } T.balance = 2 \text{ then} \\
6. \quad \text{if } T.right.balance = -1 \text{ then} \\
7. \quad \text{rotate-right}(T.right) \\
8. \quad \text{rotate-left}(T)
\]
AVL Tree Operations

search: Just like in BSTs, costs $\Theta(\text{height})$

insert: Shown already, total cost $\Theta(\text{height})$

fix will be called *at most once*.

delete: First search, then swap with successor (as with BSTs), then move up the tree and apply fix (as with *insert*).

fix may be called $\Theta(\text{height})$ times.

Total cost is $\Theta(\text{height})$.
AVL tree examples

Example: $\text{insert}(8)$
AVL tree examples

Example: \textit{insert}(8)
AVL tree examples

Example: \textit{insert}(8)
AVL tree examples

Example: $\text{insert}(8)$
AVL tree examples

Example: \textit{insert}(8)
AVL tree examples

Example: \textit{delete}(22)
AVL tree examples

Example: \textit{delete}(22)
AVL tree examples

Example: delete(22)
AVL tree examples

Example: delete(22)
AVL tree examples

Example: \textit{delete}(22)
Height of an AVL tree

Define $N(h)$ to be the least number of nodes in a height-h AVL tree.

One subtree must have height at least $h - 1$, the other at least $h - 2$:

$$N(h) = \begin{cases}
1 + N(h - 1) + N(h - 2), & h \geq 1 \\
1, & h = 0 \\
0, & h = -1
\end{cases}$$

What sequence does this look like?

The Fibonacci sequence!

$$N(h) = F_{h+3} - 1 = \left\lceil \frac{\phi^h}{\sqrt{5}} \right\rceil - 1$$

where $\phi = \frac{1 + \sqrt{5}}{2}$.
Height of an AVL tree

Define $N(h)$ to be the least number of nodes in a height-h AVL tree.

One subtree must have height at least $h - 1$, the other at least $h - 2$:

$$N(h) = \begin{cases}
1 + N(h - 1) + N(h - 2), & h \geq 1 \\
1, & h = 0 \\
0, & h = -1
\end{cases}$$

What sequence does this look like? The Fibonacci sequence!

$$N(h) = F_{h+3} - 1 = \left\lfloor \frac{\varphi^{h+3}}{\sqrt{5}} \right\rfloor - 1,$$

where $\varphi = \frac{1 + \sqrt{5}}{2}$.
Easier lower bound on $N(h)$:

\[N(h) > 2N(h - 2) > 4N(h - 4) > 8N(h - 6) > \cdots > 2^i N(h - 2i) \geq 2^{\lfloor h/2 \rfloor} \]
AVL Tree Analysis

Easier lower bound on $N(h)$:

$$N(h) > 2N(h - 2) > 4N(h - 4) > 8N(h - 6) > \cdots > 2^i N(h - 2i) \geq 2^{\lceil h/2 \rceil}$$

Since $n > 2^{\lceil h/2 \rceil}$, $h \leq 2 \lg n$, and an AVL tree with n nodes has height $O(\log n)$. Also, $n \leq 2^{h+1} - 1$, so the height is $\Theta(\log n)$.

\Rightarrow search, insert, delete all cost $\Theta(\log n)$.

Reza Dorrigiv, Daniel Roche (CS, UW)
CS240 - Module 4
Winter 2010
19 / 29
A 2-3 Tree is like a BST with additional structural properties:

- Every node either contains one KVP and two children, or two KVPs and three children.
- All the leaves are at the same level.
 (A leaf is a node with empty children.)

Searching through a 1-node is just like in a BST.
For a 2-node, we must examine both keys and follow the appropriate path.
Insertion in a 2-3 tree

First, we search to find the leaf where the new key belongs.

If the leaf has only 1 KVP, just add the new one to make a 2-node.

Otherwise, order the three keys as $a < b < c$. Split the leaf into two 1-nodes, containing a and c, and (recursively) insert b into the parent along with the new link.
2-3 Tree Insertion

Example: \textit{insert}(19)
2-3 Tree Insertion

Example: \textit{insert}(19)
2-3 Tree Insertion

Example: $insert(19)$
2-3 Tree Insertion

Example: \(insert(19)\)
2-3 Tree Insertion

Example: $\text{insert}(41)$
2-3 Tree Insertion

Example: \textit{insert}(41)
2-3 Tree Insertion

Example: \textit{insert}(41)
2-3 Tree Insertion

Example: $\text{insert}(41)$

```
 25 36 43
 18 21       31        41        51
 12 19 24 28 33 39 42 48 56 62
```
2-3 Tree Insertion

Example: \textit{insert}(41)
Deletion from a 2-3 Tree

As with BSTs and AVL trees, we first swap the KVP with its successor, so that we always delete from a leaf.

Say we’re deleting KVP x from a node V:

- If X is a 2-node, just delete x.
- Elseif X has a 2-node sibling U, perform a transfer:
 Put the “intermediate” KVP in the parent between V and U into V, and replace it with the adjacent KVP from U.
- Otherwise, we merge V and a 1-node sibling U:
 Remove V and (recursively) delete the “intermediate” KVP from the parent, adding it to U.
2-3 Tree Deletion

Example: \textit{delete}(43)
2-3 Tree Deletion

Example: $\text{delete}(43)$
2-3 Tree Deletion

Example: $\textit{delete}(43)$
2-3 Tree Deletion

Example: delete(19)
2-3 Tree Deletion

Example: delete(19)
Example: delete(19)
2-3 Tree Deletion

Example: delete(42)
2-3 Tree Deletion

Example: $\text{delete}(42)$
2-3 Tree Deletion

Example: $\text{delete}(42)$
2-3 Tree Deletion

Example: \textit{delete}(42)
2-3 Tree Deletion

Example: \(\text{delete}(42)\)
B-Trees

The 2-3 Tree is a specific type of B-tree:

A *B-tree of minsize* d is a search tree satisfying:
- Each node contains at most $2d$ KVPs.
 Each non-root node contains at least d KVPs.
- All the leaves are at the same level.

Some people call this a B-tree of order $(2d + 1)$, or a $(d + 1, 2d + 1)$-tree.
A 2-3 tree has $d = 1$.

search, insert, delete work just like for 2-3 trees.
Height of a B-tree

What is the least number of KVPs in a height-\(h\) B-tree?

<table>
<thead>
<tr>
<th>Level</th>
<th>Nodes</th>
<th>Node size</th>
<th>KVPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(d)</td>
<td>2(d)</td>
</tr>
<tr>
<td>2</td>
<td>2((d+1))</td>
<td>(d)</td>
<td>2(d)((d+1))</td>
</tr>
<tr>
<td>3</td>
<td>2((d+1)^2)</td>
<td>(d)</td>
<td>2(d)((d+1)^2)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(h)</td>
<td>2((d+1)^{h-1})</td>
<td>(d)</td>
<td>2(d)((d+1)^{h-1})</td>
</tr>
</tbody>
</table>

\[
\text{Total: } 1 + \sum_{i=0}^{h-1} 2d(d+1)^i = 2(d+1)^h - 1
\]

Therefore height of tree with \(n\) nodes is \(\Theta((\log n)/((\log d))).\)
Analysis of B-tree operations

Assume each node stores its KVPs and child-pointers in a dictionary that supports $O(\log d)$ search, insert, and delete.

Then search, insert, and delete work just like for 2-3 trees, and each require $\Theta(\text{height})$ node operations.

Total cost is $O \left(\frac{\log n}{\log d} \cdot (\log d) \right) = O(\log n)$.
Dictionaries in external memory

Tree-based data structures have poor memory locality: If an operation accesses m nodes, then it must access m spaced-out memory locations.

Observation: Accessing a single location in external memory (e.g. hard disk) automatically loads a whole block (or “page”).

In an AVL tree or 2-3 tree, $\Theta(\log n)$ pages are loaded in the worst case.

If d is small enough so a 2^d-node fits into a single page, then a B-tree of minsize d only loads $\Theta((\log n)/(\log d))$ pages.

This can result in a huge savings: memory access is often the largest time cost in a computation.
B-tree variations

Max size $2d + 1$: Permitting one additional KVP in each node allows *insert* and *delete* to avoid *backtracking* via *pre-emptive splitting* and *pre-emptive merging*.

Red-black trees: Identical to a B-tree with minsize 1 and maxsize 3, but each 2-node or 3-node is represented by 2 or 3 binary nodes, and each node holds a “color” value of red or black.

B⁺-trees: All KVPs are stored at the leaves (interior nodes just have keys), and the leaves are linked sequentially.