Quick Sheet

Remember that \(\log(n) \) is assumed to be of base 2 in Computer Science unless otherwise stated.

1. Given fact you can use on exams and assignments: \(1 < \log(n) < n < n^2 < \cdots < n^p \) for \(n > 3 \)
2. Definition of big-O: \(f(n) = O(g(n)) \) if and only if \(\exists k, n_o \) s.t. \(f(n) \leq k \cdot g(n) \) for \(n > n_o \)
3. Definition of Induction 1: if a property \(P \) holds true for \(k \), and it can be shown that \(P(n) \) implies \(P(n + 1) \) then for all \(n \geq k \) \(P(n) \) holds.
4. Definition of Induction 2: show a base case holds true, say \(P(k) \) is true. Assume \(P(n) \) is true up to some \(n \), using this show \(P(n + 1) \) is true. We now have that for all \(n \geq k \) \(P(n) \) is true.
5. Definition of Induction 3: \(\left(P(k) \text{ and } (P(n) \implies P(n + 1)) \right) \implies \forall n \left(n \geq k \implies P(n) \right) \)

Proof of big-O using Induction:

As we can see from the above definitions of induction, it is used to prove a property for all \(n \geq k \). How are we going to use this to prove \(\exists k, n_o \) s.t. \(f(n) \leq k \cdot g(n) \) for \(n \geq n_o \)? Well the definition of big-O has a for all, when we say for \(n \geq n_o \), we are really saying for all values of \(n \) that are bigger then \(n_o \). This is the part of big-O that benefits from the induction step. This is where the proofs will differ from Math 135, we also want to show \(\exists k, n_o \), and we will do this by placing restrictions on them throughout the induction proof, as once we are done the induction we can say. If I am given a \(k^* \) and \(n^* \) that satisfy these conditions the above proof of induction will prove \(f(n) \leq k^* \cdot g(n) \) for \(n \geq n^* \), and since I have value for \(k \) and \(n_o \) namely \(k^* \) and \(n^* \) they must exist, therefore \(\exists k, n_o \) s.t. \(f(n) \leq k \cdot g(n) \) for \(n \geq n_o \). Holds, therefore \(f(n) \) is \(O(g(n)) \) by definition.

Summary of Steps for Proving \(f(n) = O(g(n)) \)

1. Remove big-O notation from the question you are answering.
 ex. Prove: \(\exists k, n_o \) s.t. \(f(n) \leq k \cdot g(n) \) for \(n > n_o \)
2. Write out the function you are dealing with in terms of constants and recursion.
 ex. \(f(n) = a \text{ (for } n = 0\text{)}, f(n) = f(n - 1) + b \text{ (for } n > 0\text{)} \)
3. Base Case: Show \(f(n) \leq k \cdot g(n) \) holds for some start value of \(n \), likely to work for 0, 1, or 2.
 a. Keep in mind that you can restrict \(k > a + b \), or any other constants to make it work.
 b. Also remember that your base case is linked to \(n_o \), so if you prove it for \(n = 5 \) then \(n_o \geq 5 \) is the restriction you have to impose.
4. Induction Hypothesis: Assume \(f(n) \leq k \cdot g(n) \)
5. Induction Conclusion: Show \(f(n + 1) \leq k \cdot g(n + 1) \)
 a. For a proper proof you need exactly this statement, do not change the coefficient, ending up with \(f(n + 1) \leq 2k \cdot g(n + 1) \) or even \(f(n + 1) \leq (k + 1) \cdot g(n + 1) \) is incorrect.
 b. You can, however restrict \(k \) to be larger than given constants; don’t increase \(n_o \) as it’s linked to the base case of the induction.
6. Finish off by concluding with a statement that explains if the restrictions you have found are followed, the induction proof is complete, and because you have values for \(k \) and \(n_o \) they must exist. Therefore \(f(n) \) is \(O(g(n)) \).
1.
Prove \(f(n) \) is \(O(n^2) \), where \(f(n) = An^2 + Bn\log(n) + n \)

ie. Show \(\exists k, n_o \ f(n) \leq kn^2 \) for \(n > n_o \)

\[
f(n) = An^2 + Bn\log(n) + n
\]

\[
An^2 + Bn\log(n) + n \leq An^2 + Bn(n) + n^2 \quad \text{by fact (1), for } n > 3
\]

\[
An^2 + Bn(n) + n^2 = (A + B + 1)n^2
\]

Since, \(f(n) \leq kn^2 \) for \(n > n_o \) holds if \(k = A + B + 1 \) and \(n_o = 3 \)

There must exist \(k \) and \(n_o \) because we have values that work.

Therefore, \(\exists k, n_o \ f(n) \leq kn^2 \) for \(n > n_o \)

Therefore, \(f(n) \) is \(O(n^2) \)

2.

Prove \(f(n) \) is not \(O(n) \), where \(f(n) = An^2 \)

Assume it is true, ie. Assume \(\exists k, n_o \ f(n) \leq kn \) for \(n > n_o \)

\[
An^2 \leq kn
\]

\[
An \leq k
\]

\[
n \leq \frac{k}{A} \quad \text{there's a contradiction as } n \text{ can be as large as we want.}
\]

Pick a \(B > \frac{k}{A} \) and \(B \geq n_o \), now let \(n = B \)

\[
B \leq \frac{k}{A}
\]

but we picked \(B > \frac{k}{A} \) therefore we have a contradiction, therefore \((n) \) is not \(O(n) \).

3.

Prove \(f(n) \) is not \(O(\log(n^n)) \), where \(f(n) = An^2 \) where \(A > 0 \)

Assume it is true, ie. Assume \(\exists k, n_o \ f(n) \leq k\log(n^n) \) for \(n > n_o \)
\[f(n) = An^2 \leq k \log(n^n) \]

\[An^2 \leq kn \log(n) \]

\[An \leq k \log(n) \]

\[\frac{A}{k} \leq \frac{\log(n)}{n} \]

from here we see that there is a contradiction. We can make \(n \) as large as we want; therefore, we can make \(\frac{\log(n)}{n} \) as small as we want by picking larger \(n \), and because we are dealing with efficiency this course will always be dealing with positive constants. Therefore we are safe to say \(k > 0 \) and \(A > 0 \), and hence \(\frac{A}{k} > 0 \), now we need to show this out right.

\[\frac{A}{k} \leq \frac{\log(n)}{n} \]

let \(B = \frac{A}{k} \) and let \(n = B^B \)

\[\log(B) \leq B \leq \frac{\log(B^B)}{B^B} \]

\[B^B \leq \frac{B \log(B)}{\log(B)} \]

\[B^B \leq B \quad \text{Contradiction by fact (1)} \]

Therefore \(f(n) \) is not \(O(\log(n^n)) \)

4.

Prove \(f(n) \) is \(O(1) \), where \(f(n) = \frac{A \log(n)}{n} \)

ie. Show \(\exists k, n_o \ f(n) \leq k(1) \) for \(n > n_o \)

\[f(n) = \frac{A \log(n)}{n} \]

\[1 < \log(n) < n \text{ for } n > 3 \]

\[\frac{1}{n} < \frac{\log(n)}{n} < 1 \]

\[\frac{A \log(n)}{n} \leq A \quad (1) \]

Since, \(f(n) \leq k(1) \) for \(n > n_o \) holds if \(k = A \) and \(n_o = 3 \)
There must exist k and n_0 because we have values that work.

Therefore, $\exists k, n_0 \ f(n) \leq k(1)$ for $n > n_0$

Therefore, $f(n)$ is $O(1)$

The other ones follow easily because $A(1) < A \frac{\log(n)}{n} < A \log(n) < A \ n$

5.

Find the Error in the reasoning below.

$O(n^2)$ is $O(n(n - 1))$

$O(n^2)$ is $O(n(n - 2))$

::

$O(n^2)$ is $O(n(n - p))$

::

$O(n^2)$ is $O(n(2))$

$O(n^2)$ is $O(n(1))$

therefore $O(n^2)$ is $O(n)$.

this reasoning is correct up to $O(n^2)$ is $O(n(n - p))$, where p is a constant. The problem after this is that p is not a constant, $n(n - p) = n(2)$ implies $p = n - 2$ here we see that p depends on a variable therefore making the big-O expression change and causing a problem in our logic.
6. I’d recommend reading the ‘Proof of big-O using Induction’ in the quick sheet before proceeding.

Prove $f(n)$ is $O(n)$, where $f(n) = a$ (if $n = 0$) and $f(n) = b + f(n-1)$ (if $n > 0$)

1. Prove $\exists k, n_0 \text{ st. } f(n) \leq kn$ for $n > n_0$
2. $f(n) = \begin{cases} a & \text{if } n = 0 \\ b + f(n-1) & \text{if } n > 0 \end{cases}$
3. Base Case: Try $n = 0$ here $n_0 \geq 0$

 $f(0) = a$, want to show $f(0) \leq k(0) = 0$, but $a > 0$ (represents a constant amount of work)

 This doesn’t work so try another base case.

 Try $n = 1$ here $n_0 \geq 1$

 $f(1) = b + f(1-1) = b + a$ want to show $f(1) \leq k(1)$.

 This is easy if $k \geq a + b$ so we impose this restriction.

 Therefore base case holds if our restrictions are followed.
4. Induction Hypothesis: Assume $f(n) \leq k\ n$ holds up to some n.
5. Induction Conclusion: Show $f(n + 1) \leq k(n + 1)$

 $f(n + 1) = b + f(n)$

 $b + f(n) \leq b + k\ n$ by our assumption

 $b + k\ n \leq k + kn$ restrict $k > b$

 $k + kn = k(n + 1)$

 Therefore the Induction Conclusion holds if $k > b$.
6. If I am given a $k^* \text{ st. } k^* > a + b$ and $k^* > b$ (which is redundant) say $k^* = a + b + 1$ and a $n^* \text{ st. } n^* \geq 1$ say $n^* = 2$. The above induction proof concludes that $f(n) \leq k^* \ n \text{ for } n > n^*$, and because I have values k^* and n^* $\exists k, n_0 \text{ st. } f(n) \leq kn \text{ for } n > n_0.$

 Therefore $f(n)$ is $O(n)$.

Prove $T(n)$ is $O(n^2)$, where $T(0)$ and $T(1)$ are $O(1)$, and $T(n) = T(n-2) + f(n)$, where $f(n)$ is $O(n)$.

1. Prove $\exists k, n_o \text{ st. } T(n) \leq kn^2$ for $n > n_o$
 Where $\exists a, n_a \text{ st. } T(0) \leq a(1)$ for $n > n_a$ but because a does not include n, it’s simply $\forall n$.
 Where $\exists b, n_b \text{ st. } T(1) \leq b(1)$ for $n > n_b$ but because b does not include n, it’s simply $\forall n$
 Where $\exists k_f, n_f \text{ st. } f(n) \leq k_f n$ for $n > n_f$

 2. $T(n) = \begin{cases}
 a & \text{if } n = 0 \\
 b & \text{if } n = 1 \text{ note how } f(n) \text{ is left in the equation, this is because we only have information about } f(n) \text{ above } n_f, \text{ but we’ll use this later.} \\
 T(n-2) + f(n) & \text{if } n > 1
 \end{cases}$

3. Base Case: try \(n = 2 \) here \(n_o \geq 2 \)
 $T(2) = T(2-2) + f(2) = a + f(2) \leq a + k_f(2)$
 Want $T(2) \leq k2^2 = 4k$, restrict $k > k_f$ and $k > a$ then
 $a + k_f(2) \leq k + 2k < 4k$
 Therefore $T(2) < k2^2$ holds with our restrictions.
 But we need two base cases because we are stepping down the recursion by two \((T(n-2))\)
 try \(n = 3 \)
 $T(3) = T(3-2) + f(3) = b + f(3) \leq b + k_f(3)$
 Want $T(3) \leq k3^2 = 9k$, restrict $k > k_f$ and $k > b$ then
 $b + k_f(3) \leq k + 3k < 9k$
 Therefore $T(3) < k3^2$ holds with one more restrictions.

7. Induction Hypothesis: Assume $T(n) \leq kn^2$ up to some n.

8. Induction Conclusion: Show $T(n + 1) \leq k(n + 1)^2 = kn^2 + 2kn + k$
 $T(n + 1) = T(n - 1) + f(n + 1)$
 $T(n - 1) + f(n + 1) \leq k(n - 1)^2 + f(n + 1)$ by Indo Hypo
 $k(n - 1)^2 + f(n + 1) \leq k(n - 1)^2 + k_f(n + 1)$
 $f(n)$ is $O(n)$
 $k(n - 1)^2 + k_f(n + 1) = kn^2 - 2kn + k + k_f n + k_f$
 If we add the restriction that $k > k_f$ (yes I’ve done this already) we get.
 $kn^2 - 2kn + k + k_f n + k_f \leq kn^2 - 2kn + k + kn + k$
 $kn^2 - 2kn + k + k_f n + k \leq kn^2 - kn + 2k$
 $kn^2 - kn + 2k \leq kn^2 - kn + 2kn$
 $kn^2 - kn + 2kn \leq kn^2 + kn$
 $kn^2 + kn \leq kn^2 + 2kn + k$
 $kn^2 + 2kn + k = k(n + 1)^2$
 This proves our Induction Conclusion under our restrictions.

9. Therefore if I’m given values k^* and n^* that follow the restrictions I’ve set down, the above induction proves $T(n) \leq k^*n^2$ for $n > n^*$. From here it follows that $T(n)$ is $O(n^2)$