II. Efficiency Analysis

Informal efficiency analysis

The following table gives the asymptotic run-times for the two methods in the two implementations:

<table>
<thead>
<tr>
<th></th>
<th>ss-list%</th>
<th>ss-vect%</th>
</tr>
</thead>
<tbody>
<tr>
<td>member?</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>insert!</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

safe-insert

The asymptotic run-time of safe-insert! is $O(n)$ in both implementations since

$$O(n) + O(\log n) = O(1) + O(n) = O(n).$$

Formal analysis

In order to analyze contains-duplicate?, we first need to look at the helper function contains?. So define $C(n)$ to be the maximal number of steps to evaluate (contains? lst num) when lst has n elements.

Then we can see that

$$C(n) = \begin{cases}
 c_1, & n = 0 \\
 c_2 + C(n-1), & n \geq 1
\end{cases}$$

where c_1 and c_2 are some positive constants.

Solving this recurrence (not shown — see Lecture Module 5, Page 6) gives us the explicit formula $C(n) = c_1 + c_2 n$.

Now we can write a recurrence for $T(n)$, the maximum number of steps to evaluate contains-duplicate? on input of length n, in terms of $T(m)$ for $m < n$ and $C(m)$:

$$T(n) = \begin{cases}
 c_3, & n = 0 \\
 c_4 + C(n-1) + T(n-1), & n \geq 1
\end{cases}$$
where again c_3, c_4 are positive constants.

Substituting the explicit formula for $C(n)$ and creating the new constant $c_5 = c_4 + c_1 - c_2$ gives the simplification:

$$T(n) = \begin{cases}
 c_3, & n = 0 \\
 c_5 + c_2n + T(n-1), & n \geq 1
\end{cases}$$

III. Proofs

Solving a recurrence

Let’s examine some values of $T(n)$ to try to guess a recurrence:

$$
\begin{align*}
T(0) &= c_3 \\
T(1) &= c_5 + c_2 + c_3 \\
T(2) &= 2c_5 + (1 + 2)c_2 + c_3 \\
T(3) &= 3c_5 + (1 + 2 + 3)c_2 + c_3 \\
T(4) &= 4c_5 + (1 + 2 + 3 + 4)c_2 + c_3
\end{align*}
$$

From this, we guess that $T(n) = nc_5 + (1 + 2 + \cdots + n)c_2 + c_3$. And we know from some basic math course that $1 + 2 + \cdots + n = n(n + 1)/2$. So we have (still a guess) that

$$T(n) = c_5n + c_2\frac{n(n+1)}{2} + c_3.$$

Now we want to prove this by induction:

Proof. Claim: $T(n) = c_5n + c_2n(n+1)/2 + c_3$ for all $n \geq 0$

Base case: $n = 0$ From the recurrence, we know that $T(0) = c_3$. And

$$c_5 \cdot 0 + c_2 \cdot 0 \cdot (0+1)/2 + c_3 = 0,$$

so the claim holds for the base case when $n = 0$.

Induction Hypothesis Assume that $T(k) = c_5k + c_2k(k+1)/2 + c_3$ for some $k \geq 0$.

2
Inductive Step Since $k \geq 0$, $k + 1 \geq 1$, so we know from the recurrence that $T(k + 1) = c_5 + c_2(k + 1) + T(k)$. Then, using the induction hypothesis, we have:

$$T(k + 1) = c_5 + c_2(k + 1) + c_5k + c_2\frac{k(k + 1)}{2} + c_3$$

$$= c_5(k + 1) + c_2(k + 1)\left(1 + \frac{k}{2}\right) + c_3$$

$$= c_5(k + 1) + c_2\frac{(k + 1)(k + 2)}{2} + c_3$$

So the claim holds for $n = k + 1$ whenever the claim holds for $n = k$.

Conclusion Therefore, by the principle of mathematical induction, the claim holds for all $n \geq 0$, and we are done.

Proving $f(n)$ is $O(g(n))$

We want to prove that $T(n)$ is $O(n^2)$, using the explicit formula we just computed. First, let’s simplify our formula for $T(n)$:

$$T(n) = c_5n + c_2\frac{n(n + 1)}{2} + c_3$$

$$= c_2n^2 + \frac{2c_5 + c_2}{2}n + c_3$$

So if we create two more constants

$$c_6 = \frac{c_2}{2}, \quad c_7 = \frac{2c_5 + c_2}{2},$$

then we have $T(n) = c_6n^2 + c_7n + c_3$. Now proving $T(n)$ is $O(n^2)$ should be straightforward.

When we are proving something is order of something else, we need to choose the constants c and n_0 to use in the definition. I’ll choose $c = c_6 + c_7 + c_3$ and $n_0 = 1$. Many other choices for these constants would also work.

For the proof, we need to show that $T(n) \leq cn^2$ for all $n \geq n_0$. Since $n \geq 1$, we know that $n \leq n^2$ and $1 \leq n^2$, so we can write

$$T(n) = c_6n^2 + c_7n + c_3 \leq c_6n^2 + c_7c^2 + c_3n^2 = (c_6 + c_7 + c_3)n^2 = cn^2$$

whenever $n \geq n_0 = 1$. Therefore, by the definition of order notation, $T(n)$ is $O(n^2)$.

3
Proving \(f(n) \) is not \(O(g(n)) \)

We want to prove that \(T(n) \) is not \(O(n \log n)^2 \). To do this, we will want to use that fact that

\[
1 < \log n < (\log n)^2 < n
\]

whenever \(n > 16 \).

In general, to prove something is not order of something else, we will use a proof by contradiction. So we will not get to choose the constants \(c \) and \(n_0 \), but we will choose a special value of \(n \) to show a contradiction.

For this proof, assume by way of contradiction that \(T(n) \) is \(O(n \log n)^2 \). Then, by the definition of order notation, there exist positive constants \(c \) and \(n_0 \) such that \(T(n) \leq cn(\log n)^2 \) whenever \(n \geq n_0 \). To show a contradiction, let \(k = \max \{ c(c+1)^2, n_0, 17 \} \), and let \(n = k^{c+1} \).

Then \(k > 16 \), so \(k > (\log k)^2 \). And since \(k \geq c(c+1)^2 \) and \(c \geq 1 \), \(k^c \geq c(c+1)^2 \). Using these facts, we have:

\[
T(n) = c_6n^2 + c_7n + c_3 \\
> n^2 \\
= nk^c \\
> nc(c+1)^2(\log k)^2 \\
= cn((c+1)(\log k)^2 \\
= cn(\log k^{c+1})^2 \\
= cn(\log n)^2
\]

So \(T(n) > cn(\log n)^2 \). And since \(k \geq n_0 \), \(n \geq n_0 \), so this is a contradiction. Therefore our original assumption must be false; namely \(T(n) \) is not \(O(n(\log n)^2) \).