Class 9: Recursive descent and table-driven top-down parsing

SI 413 - Programming Languages and Implementation

Dr. Daniel S. Roche

United States Naval Academy

Fall 2011
Top-down parsing

1. Initialize the stack with S, the start symbol.
2. while stack and input are both not empty do
3. if top of stack is a terminal then
4. Match terminal to next token
5. else
6. Pop nonterminal and replace with r.h.s. from a derivation rule
7. Accept iff stack and input are both empty

Make choice on Step 6 by “peeking” ahead in the token stream.
LL(1) Grammars

A grammar is LL(1) if it can be parsed top-down with just 1 token’s worth of look-ahead.

Example grammar

\[
\begin{align*}
S & \rightarrow T \ T \\
T & \rightarrow \text{ab} \\
T & \rightarrow \text{aa}
\end{align*}
\]

Is this grammar LL(1)?
Common prefixes

The *common prefix* in the previous grammar causes a problem.

In this case, we can “factor out” the prefix:

<table>
<thead>
<tr>
<th>LL(1) Grammar</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow T \ T$</td>
</tr>
<tr>
<td>$T \rightarrow a \ X$</td>
</tr>
<tr>
<td>$X \rightarrow b$</td>
</tr>
<tr>
<td>$X \rightarrow a$</td>
</tr>
</tbody>
</table>
Left recursion

The other enemy of LL(1) is *left recursion*:

\[
\begin{align*}
S & \rightarrow \ exp \\
exp & \rightarrow \ exp + \text{NUM} \\
exp & \rightarrow \text{NUM}
\end{align*}
\]

- Why isn’t this LL(1)?
- How could we “fix” it?
Making grammars LL using tail rules

To make LL grammars, we usually end up adding extra “tail rules” for list-like non-terminals.

For instance, the previous grammar can be rewritten as

\[
S \rightarrow \text{exp} \\
\text{exp} \rightarrow \text{NUM exptail} \\
\text{exptail} \rightarrow \epsilon \mid + \text{NUM exptail}
\]

This is now LL(1).

(Remember that ϵ is the empty string in this class.)
Recall: Calculator language scanner

<table>
<thead>
<tr>
<th>Token name</th>
<th>Regular expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUM</td>
<td>[0-9]+</td>
</tr>
<tr>
<td>OPA</td>
<td>[+-]</td>
</tr>
<tr>
<td>OPM</td>
<td>[*/]</td>
</tr>
<tr>
<td>LP</td>
<td>(</td>
</tr>
<tr>
<td>RP</td>
<td>)</td>
</tr>
<tr>
<td>STOP</td>
<td>;</td>
</tr>
</tbody>
</table>
LL(1) grammar for calculator language

\[
S \rightarrow \text{exp } \text{STOP} \\
\text{exp} \rightarrow \text{term } \text{exptail} \\
\text{exptail} \rightarrow \epsilon \mid \text{OPA term exptail} \\
\text{term} \rightarrow \text{sfactor } \text{termtail} \\
\text{termtail} \rightarrow \epsilon \mid \text{OPM factor termtail} \\
\text{sfactor} \rightarrow \text{OPA factor } \mid \text{factor} \\
\text{factor} \rightarrow \text{NUM } \mid \text{LP exp RP}
\]

How do we know this is LL(1)?
Recursive Descent Parsers

A recursive descent top-down parser uses *recursive functions* for parsing every non-terminal, and uses the function call stack implicitly instead of an explicit stack of terminals and non-terminals.

If we also want the parser to *do something*, then these recursive functions will return values. They will also sometimes take values as parameters.

(See posted examples.)
Table-driven parsing

Auto-generated top-down parsers are usually *table-driven*.

The program stores an *explicit* stack of expected symbols, and applies rules using a nonterminal-token table.

Using the expected non-terminal and the next token, the table tells which production rule in the grammar to apply.

Applying a production rule means pushing some symbols on the stack.

(See posted example.)
Automatic top-down parser generation

In table-driven parsing, the code is always the same; only the table is different depending on the language.

Top-down parser generators first generate two sets for each non-terminal:
- **FIRST**: Which tokens can appear at the beginning of a non-terminal
- **FOLLOW**: Which non-terminals can come after this non-terminal

There are simple rules for generating FIRST and FOLLOW, and then for generating the parsing table using these sets.