1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/* SI 413 Fall 2013
 * Lab 7
 * This is a C++ header file for the AST class hierarchy.
 * YOUR NAME HERE
 * PARTNER NAME HERE
 */
 
#ifndef AST_HPP
#define AST_HPP
 
#include <cstdlib>
#include <string>
#include <fstream>
#include <sstream>
#include <vector>
using namespace std;
 
#include "colorout.hpp"
#include "value.hpp"
#include "st.hpp"
 
// This global variable is the actual global symbol table object.
// It is actually declared in the ast.cpp file, so we put keyword "extern"
// here.
extern SymbolTable ST;
 
// Declare the output streams to use everywhere
extern colorout resout;
extern colorout errout;
 
// Global variable to indicate if an error has occurred.
extern bool error;
 
// Global variable to indicate there is a human typing at a keyboard
extern bool showPrompt;
 
// This enum type gives codes to the different kinds of operators.
// Basically, each oper below such as DIV becomes an integer constant.
enum Oper {
  ADD, SUB,
  MUL, DIV,
  LT, GT, LE, GE, 
  EQ, NE,
  AND, OR, NOT
};
 
// These are forward declarations for the classes defined below.
// They show the class hierarchy.
class AST;
  class Stmt;
    class NullStmt;
    class Block;
    class IfStmt;
    class WhileStmt;
    class NewStmt;
    class Asn;
    class Write;
  class Exp;
    class Id;
    class Num;
    class BoolExp;
    class ArithOp;
    class CompOp;
    class BoolOp;
    class NegOp;
    class NotOp;
    class Read;
    class Lambda;
    class Funcall;
 
/* The AST class is the super-class for abstract syntax trees.
 * Every type of AST (or AST node) has its own subclass.
 */
class AST {
  private:
    /* Adds this node and all children to the output stream in DOT format. 
     * nextnode is the index of the next node to add. */
    void addToDot(ostream& out, int& nextnode);
 
  protected:
    // These two protected fields determine the structure of the AST.
    string nodeLabel;
    vector<AST*> children;
 
    // Inserts a new AST node as a child of this one.
    // (where the new node is inserted depends on which subclass.)
    virtual void ASTchild(AST* child) = 0;
 
  public:
    /* Writes this AST to a .dot file as named. */
    void writeDot(const char* fname);
 
    /* Makes a new "empty" AST node. */
    AST() { nodeLabel = "EMPTY"; }
};
 
/* Every AST node that is not a Stmt is an Exp.
 * These represent actual computations that return something
 * (in particular, a Value object).
 */
class Exp :public AST {
  protected:
    // Inserts a new AST as a child of this one.
    void ASTchild(AST* child) { children.push_back(child); }
 
  public:
    /* This is the method that must be overridden by all subclasses.
     * It should perform the computation specified by this node, and
     * return the resulting value that gets computed. */
    virtual Value eval() {
      if (!error) {
        errout << "eval() not yet implemented for " 
               << nodeLabel << " nodes!" << endl;
        error = true;
      }
      return Value();
    }
};
 
/* An identifier, i.e. variable or function name. */
class Id :public Exp {
  private:
    string val;
 
  public:
    // Constructor from a C-style string
    Id(const char* v) { 
      val = v;
      nodeLabel = "Exp:Id:" + val;
    }
 
    // Returns a reference to the stored string value.
    string& getVal() { return val; }
};
 
/* A literal number in the program. */
class Num :public Exp {
  private:
    int val;
 
  public:
    Num(int v) { 
      val = v;
      // Converting integers to strings is a little annoying...
      ostringstream label;
      label << "Exp:Num:" << val;
      nodeLabel = label.str();
    }
 
    // To evaluate, just return the number!
    Value eval() { return val; }
};
 
/* A literal boolean value like "true" or "false" */
class BoolExp :public Exp {
  private:
    bool val;
 
  public:
    BoolExp(bool v) { 
      val = v;
      nodeLabel = "Exp:Bool:";
      if (v) nodeLabel += "true";
      else nodeLabel += "false";
    }
};
 
/* A binary opration for arithmetic, like + or *. */
class ArithOp :public Exp {
  private:
    Oper op;
    Exp* left;
    Exp* right;
 
  public:
    ArithOp(Exp* l, Oper o, Exp* r);
 
    Value eval();
};
 
/* A binary operation for comparison, like < or !=. */
class CompOp :public Exp {
  private:
    Oper op;
    Exp* left;
    Exp* right;
 
  public:
    CompOp(Exp* l, Oper o, Exp* r);
};
 
/* A binary operation for boolean logic, like "and". */
class BoolOp :public Exp {
  private:
    Oper op;
    Exp* left;
    Exp* right;
 
  public:
    BoolOp(Exp* l, Oper o, Exp* r);
};
 
/* This class represents a unary negation operation. */
class NegOp :public Exp {
  private:
    Exp* right;
 
  public:
    NegOp(Exp* r) { 
      nodeLabel = "Exp:NegOp";
      right = r;
      ASTchild(right);
    }
};
 
/* This class represents a unary "not" operation. */
class NotOp :public Exp {
  private:
    Exp* right;
 
  public:
    NotOp(Exp* r) { 
      nodeLabel = "Exp:NotOp";
      right = r;
      ASTchild(right);
    }
};
 
/* A read expression. */
class Read :public Exp {
  public:
    Read() { nodeLabel = "Exp:Read"; }
};
 
/* A Stmt is anything that can be evaluated at the top level such
 * as I/O, assignments, and control structures.
 * The last child of any statement is the next statement in sequence.
 */
class Stmt :public AST {
  private:
    // Pointer to the next statement in sequence.
    Stmt* next;
 
  protected:
    // Inserts a new AST as a child of this one.
    void ASTchild(AST* child) {
      // This inserts before the last thing in the vector,
      // i.e., just before the "next" statement
      children.insert(children.end()-1, child);
    }
 
  public:
    /* This static method is for building sequences of statements by the
     * parser. It takes two statements, and appends one at the end of the other.
     * The returned value is a pointer to the new statement representing
     * the sequence.
     */
    static Stmt* append(Stmt* a, Stmt* b);
 
    /* Default constructor. The next statement will be set to NullStmt. */
    Stmt ();
 
    // This constructor sets the next statement manually.
    Stmt (Stmt* nextStmt) {
      if (nextStmt != NULL) children.push_back(nextStmt);
      next = nextStmt;
    }
 
    // Getter and setter for the next statement in sequence.
    Stmt* getNext() { return next; }
    void setNext(Stmt* nextStmt) { 
      children.back() = nextStmt; 
      next = nextStmt;
    }
 
    // This should only be false in the NullStmt class.
    bool hasNext() { return next != NULL; }
 
    /* This is the command that must be implemented everywhere to
     * execute this Stmt - that is, do whatever it is that this statement
     * says to do. */
    virtual void exec() {
      if (!error) {
        errout << "exec() not yet implemented for " 
               << nodeLabel << " nodes!" << endl;
        error = true;
      }
    }
};
 
/* This class is necessary to terminate a sequence of statements. */
class NullStmt :public Stmt {
  public:
    NullStmt() :Stmt(NULL) { 
      nodeLabel = "Stmt:Null";
    }
 
    // Nothing to execute!
    void exec() { }
};
 
/* This is a statement for a block of code, i.e., code enclosed
 * in curly braces { and }.
 * Eventually, this is where scopes will begin and end.
 */
class Block :public Stmt {
  private:
    Stmt* body;
 
  public:
    Block(Stmt* b) { 
      nodeLabel = "Stmt:Block";
      body = b;
      ASTchild(body);
    }
};
 
/* This class is for "if" AND "ifelse" statements. */
class IfStmt :public Stmt {
  private:
    Exp* clause;
    Stmt* ifblock;
    Stmt* elseblock;
 
  public:
    IfStmt(Exp* e, Stmt* ib, Stmt* eb) { 
      nodeLabel = "Stmt:If";
      clause = e;
      ifblock = ib;
      elseblock = eb;
      ASTchild(clause);
      ASTchild(ifblock);
      ASTchild(elseblock);
    }
};
 
/* Class for while statements. */
class WhileStmt :public Stmt {
  private:
    Exp* clause;
    Stmt* body;
   
  public:
    WhileStmt(Exp* c, Stmt* b) { 
      nodeLabel = "Stmt:While";
      clause = c;
      body = b;
      ASTchild(clause);
      ASTchild(body);
    }
};
 
/* A "new" statement creates a new binding of the variable to the
 * stated value.  */
class NewStmt :public Stmt {
  private:
    Id* lhs;
    Exp* rhs;
 
  public:
    NewStmt(Id* l, Exp* r) { 
      nodeLabel = "Stmt:New";
      lhs = l;
      rhs = r;
      ASTchild(lhs);
      ASTchild(rhs);
    }
};
 
/* An assignment statement. This represents a RE-binding in the symbol table. */
class Asn :public Stmt {
  private:
    Id* lhs;
    Exp* rhs;
   
  public:
    Asn(Id* l, Exp* r) { 
      nodeLabel = "Stmt:Asn";
      lhs = l;
      rhs = r;
      ASTchild(lhs);
      ASTchild(rhs);
    }
};
 
/* A write statement. */
class Write :public Stmt {
  private:
    Exp* val;
 
  public:
    Write(Exp* v) { 
      nodeLabel = "Stmt:Write";
      val = v;
      ASTchild(val);
    }
 
    void exec() {
      Value res = val->eval();
      if (!error) {
        res.writeTo(resout); 
        resout << endl; 
      }
      getNext()->exec();
    }
};
 
/* A lambda expression consists of a parameter name and a body. */
class Lambda :public Exp {
  private:
    Id* var;
    Stmt* body;
 
  protected:
    void writeLabel(ostream& out) { out << "lambda:exp" << flush; }
 
  public:
    Lambda(Id* v, Stmt* b) { 
      nodeLabel = "Exp:Lambda";
      var = v;
      body = b;
      ASTchild(var);
      ASTchild(body);
    }
 
    // These getter methods are necessary to support actually calling
    // the lambda sometime after it gets created.
    string& getVar() { return var->getVal(); }
    Stmt* getBody() { return body; }
};
 
/* A function call consists of the function name, and the actual argument.
 * Note that all functions are unary. */
class Funcall :public Exp {
  private:
    Exp* funexp;
    Exp* arg;
  
  public:
    Funcall(Exp* f, Exp* a) { 
      nodeLabel = "Exp:Funcall";
      funexp = f;
      arg = a;
      ASTchild(funexp);
      ASTchild(arg);
    }
};
 
#endif //AST_HPP