Comparing Problems

Remember the concepts of Problem, Algorithm, and Program.

We’ve gotten pretty good at comparing algorithms. How do we compare problems?

- Sorted Array Search
- Sorting
- Integer Factorization
- Integer Multiplication
- Selection
- Maximum Matching
- Minimum Vertex Cover

Computational Complexity

The **difficulty of a problem** is the worst-case cost of the **best possible algorithm** that solves that problem.

Computational complexity is the study and classification of problems according to their inherent difficulty.

Why study this?

- Want to know when an algorithm is as good as possible.
- Sometimes we want problems to be difficult!

How to compare problems

Big-\(O\), big-\(\Theta\), and big-\(\Omega\) are used to compare two functions.

How can we compare two problems?

Example: Sorting vs. Selection

- Forget about any specific algorithms for these problems.
- Instead, develop algorithms to solve one problem by using any algorithm for the other problem.
- Solving selection using a sorting algorithm:
- Solving sorting using a selection algorithm:
- Conclusion?
Defining tractable and intractable

Cobham-Edmonds thesis:
A problem is tractable only if it can be solved in polynomial time.

What can we say about intractable problems?
- Maybe they're undecidable (e.g., the halting problem)
- Maybe they just seem impossible (e.g., regexp equivalence)
- But not always! (e.g., integer factorization)

Million-dollar question:
Can any problems be verified quickly but not solved quickly?

Fair comparisons: Machine models

Proving lower bounds on problems requires a careful model of computation.

Candidates:
- Turing machine
- Clock cycles on your phone
- MIPS instructions
- "Primitive operations"

Theorem
These models are all polynomial-time equivalent.

Fair comparisons: Bit-length

Input size is our measure of difficulty \(n \).
It must be measured the same between different problems!

Past examples:
- Factorization \(\Theta(\sqrt{n}) \) vs. HeapSort \(\Theta(n \log n) \)
- Karatsuba's \(\Theta(n^{1.59}) \) vs. Strassen's \(\Theta(n^{2.81}) \)
- Dijkstra's \(\Theta(n^2) \) vs Dijkstra's \(\Theta((n + m) \log n) \)

Only measure for this unit: **length in bits of the input**
Fair comparisons: Decision problems

What about the size of the output? We’ll consider only:

Definition: Decision Problems
Problems whose output is YES or NO

Is this a big restriction?
- Selection
- El Scheduling
- Integer factorization
- Minimum vertex cover

Decision problem comparison

Compare regular factorization with decision problem version:
- Given instance \((N, k)\) of decision problem,
 use computational version to solve it:

- Given instance \(N\) of computational problem,
 use decision problem to solve it:

Formal Problem Definitions

Page 1

\textsc{ShortPath}(G, u, v, k)

\textbf{Input}: Graph \(G = (V, E)\), vertices \(u\) and \(v\), integer \(k\)

\textbf{Output}: Does \(G\) have a path from \(u\) to \(v\) of length at most \(k\)?

Input size and encoding:

\textsc{LongPath}(G, u, v, k)

\textbf{Input}: Graph \(G = (V, E)\), vertices \(u\) and \(v\), integer \(k\)

\textbf{Output}: Does \(G\) have a path from \(u\) to \(v\) of length at least \(k\)?

Input size and encoding:
Formal Problem Definitions

FACT(N, k)

Input: Integers N and k
Output: Does N have a prime factor less than k?

Input size and encoding:

VC(G, k)

Input: Graph G = (V, E), integer k
Output: Does G have a vertex cover with at most k nodes?

Input size and encoding:

Our first complexity class

Complexity theory is all about classifying problems based on difficulty.

Definition
The complexity class \(P \) consists of all decision problems that can be solved by an algorithm whose worst-case cost is \(O(n^k) \), for some constant k, and where n is the bit-length of the input instance.

This is the “polynomial-time” class. Can you name some members?

Nice properties of \(P \)

When we just worry about polynomial-time, we can be really lazy in analysis!

Polynomial-time is closed under:

- **Addition**: \(n^k + n^\ell \in O(n^{\max(k, \ell)}) \)
 - In terms of algorithms: one after the other.

- **Multiplication**: \(n^k \cdot n^\ell \in O(n^{k+\ell}) \)
 - In terms of algorithms: calls within loops.

- **Composition**: \(n^k \circ n^\ell \in O(n^{k\ell}) \)
 - In terms of algorithms: replace every primitive op. with a function call
Certificates

A *certificate* for a decision problem is some kind of digital “proof” that the answer is YES.

The certificate is usually what the output *would be* from the “computational version”.

Examples (informally):
- Integer factorization
- Minimum vertex cover
- Shortest path
- Longest path

Verifiers

A *verifier* is an algorithm that takes:
- Problem instance (input) for some decision problem
- An alleged certificate that the answer is YES

and returns YES iff the certificate is legit.

Principle comes from “guess-and-check” algorithms:
- Finding the answer is tough, but
- checking the answer is easy.

We can write fast verifiers for hard problems!

Our second complexity class

Definition

The complexity class **NP** consists of all decision problems that have can be *verified* in polynomial-time in the bit-size of the original problem input.

Steps for an NP-proof:
- Define a notion of certificate
- Prove that certificates have length \(O(n^k) \) for some constant \(k \)
- Come up with a verifier algorithm
- Prove that the algorithm runs in time \(O(n^k) \) for some (other) constant \(k \)
VC is in **NP**

VC\((G,k)\): “Does \(G\) have a vertex cover with at most \(k\) vertices?”

- Certificate:

- Certificate size:

- Verifier algorithm:

- Algorithm cost:

FACT is in **NP**

FACT\((N,k)\): “Does \(N\) have a prime factor less than \(k\)?”

- Certificate:

- Certificate size:

- Verifier algorithm:

- Algorithm cost:

How to get rich

The **BIG** question is: Does \(P\) equal \(NP\)?

The Clay Institute offers $1,000,000 for a proof either way.

- What you would need to prove \(P = NP\):

- What you would need to prove \(P \neq NP\):

In a nutshell: Is guess-and-check ever the best algorithm?
Alternate meaning of **NP**

Meaning of the name **NP**: “Non-deterministic polynomial time”

Non-deterministic Turing machine
 - Turing machine with (possibly) multiple transitions for the same current state and current tape symbol
 - Like a computer program with “guesses”
 - Connection to randomness?

Why is this equivalent to our definition with certificates and verifiers?

Reductions

Recall that a reduction from problem A to problem B is a way of solving problem A using *any algorithm* for problem A. Then we know that A is not more difficult than B.

Formally, a reduction from A to B:
 - Takes an *instance* of problem A as input
 - Uses this to create *m* instances of problem B
 - Uses the solutions to those *m* problem B’s to recover the solution for the original problem A

Example Linear-Time Reduction

Two problems:
 - **MMUL(A, B)**: Compute the product of matrices A and B
 - **MSQR(A, B)**: Compute the matrix square A^2

Show that the inherent difficulty of MMUL and MSQR is the same.
Polynomial-Time Reduction

Ingredients for analyzing a reduction:
(All will be functions of \(n \), the input size for problem A)
- Number \((m) \) of problem B instances created
- Maximum bit-size of a problem B instance
- Amount of extra work to do the actual reduction.

Polynomial-time reduction: all three ingredients are \(O(n^k) \)
(Often \(m = 1 \), sometimes called a "strong reduction".)
We write \(A \leq_P B \), meaning
"A is polynomial-time reducible to B".

Formal Problem Definitions

Minimum Hitting Set: \(\text{HITSET}(L, k) \)

Input: List \(L \) of sets \(S_1, S_2, \ldots, S_m \), integer \(k \).

Output: Is there a set \(H \) with size at most \(k \) such that every \(S_i \cap H \) is not empty?

HAMCYCLE(G)

Input: Graph \(G = (V, E) \)

Output: Does \(G \) have a cycle that touches every vertex?

VC reduces to HITSET
Reductions

HAMCYCLE reduces to LONGPATH

NP-Completeness

Completeness

Definition
A problem B is \textbf{NP}-hard if \(A \leq^P B \) for every problem \(A \in \text{NP} \).

Informally: \textbf{NP}-hard means “at least as difficult as every problem in \textbf{NP}”

Definition
A problem B is \textbf{NP}-complete if B is \textbf{NP}-hard and B \(\in \text{NP} \).

What is the hardest problem in \textbf{NP}?

An easy \textbf{NP}-hard proof

\textbf{Theorem}: The halting problem is \textbf{NP}-hard.

\textbf{Proof}:
Circuit Satisfiability: CIRCUIT-SAT(C)

Input: Boolean circuit C with AND, OR, and NOT gates, m inputs, and one output.

Output: Is there a setting of the m inputs that makes the output true?

Input size and encoding:

3-SAT(F)

Input: Boolean formula F in “conjunctive normal form” (product of sums), with three literals (terms) in every sum (clause):

\[F = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_2 \lor x_4 \lor x_5) \land (x_1 \lor x_2 \lor \neg x_4) \land \cdots \]

Output: Can we assign T/F to the x_i's to make the formula true?

Input size and encoding:

NP-Completeness

Modeling programs as circuits

Remember this simple model of a computer?

- **State** contains PC, registers, program, memory
 - Size is linear in input size and program runtime
- **Combinational** is a circuit (AND, OR, and NOT gates)
 - for ALUs, MUXes, control, shifts, adders, etc.
 - Size is polynomial in size of state.

Lemma

Any decision problem with a polynomial-time algorithm can be simulated by a polynomial-size boolean circuit.

CIRCUIT-SAT is **NP-hard**
NP-Completeness

Theorem
CIRCUIT-SAT is NP-complete.

Proof: All that’s left is to show CIRCUIT-SAT ∈ NP.

- We only have to do this kind of proof once (why?)
- Will this help us prove **P ≠ NP**?

More NP-Complete Problems

3-SAT

We want to reduce CIRCUIT-SAT to 3-SAT.

Idea: Every wire in the circuit becomes a variable.

<table>
<thead>
<tr>
<th>Gate</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((\neg x \lor \neg y \lor z) \land (x \lor \neg z) \land (y \lor \neg z))</td>
</tr>
<tr>
<td></td>
<td>((x \lor \neg z) \land (\neg x \lor \neg z) \land (\neg y \lor \neg z))</td>
</tr>
<tr>
<td></td>
<td>((x \lor \neg z) \land (\neg x \lor \neg z))</td>
</tr>
</tbody>
</table>

- What do these clauses ensure?
- What other clause do we need to add?

VC

Reduce 3-SAT to VC.
Properties of **NP-Complete Problems**

There are many known **NP**-complete problems. We have seen: LONGPATH, VC, HITSET, HAMCYCLE, CIRCUIT-SAT, 3-SAT.

What’s needed to prove a new problem is **NP**-complete:

Note: All have *one-sided* verifiers (can’t verify NO answer!)

What about FACT?

Frontiers of Complexity Theory

Big open questions:
- Does $P = \text{NP}$? (Probably not)
- Is FACT **NP**-complete? (Probably not)
- Is FACT in P? (Hopefully not!)
- Do true one-way functions exist? (Not if $P = \text{NP}$)
- Can quantum computers solve **NP**-hard problems? (Probably not)
- Where does randomness fit in?

Traveling Salesman Problem

TSP Definition

Input: Graph $G = (V, E)$

Output: The shortest cycle that includes every vertex exactly once, or **FAIL** if none exist.

- Classic **NP**-hard problem
- Many important applications
- The worst-case is hard — so what can we do?
MSTs and TSP

Theorem: Length of TSP tour is at least the size of a MST.

```
   a --- 5 --- 4 --- 2
   |      |      |
  5      2      2
   e --- 5 --- 4 --- 5
   b --- 2      2
   c
```

Branch and Bound

How to compute the optimal TSP?
- Pick a starting vertex
- Explore every path, depth-first
- Return the least-length Hamiltonian cycle

This is really slow (*of course!*)

Branch and bound idea:
- Define a quick lower bound on remaining subproblem (MST!)
- Stop exploring when the lower bound exceeds the best-so-far

Simplified TSP

Solving the TSP is really hard; some special cases are a bit easier:

Metric TSP
- Edge lengths “obey the triangle inequality”:
 \[w(a, b) + w(b, c) \geq w(a, c) \forall a, b, c \in V \]
- What does this mean about the graph?

Euclidean TSP
- Graph can be drawn on a 2-dimensional map.
- Edge weights are just distances!
- (Sub-case of Metric TSP)
Approximating Metric TSP

Idea: Turn any MST into a TSP tour.

![Graph][1]

How good is the approximation?

Greedy TSP

Greedy strategies:
- Nearest neighbor
- Smallest “good” edge

![Graph][2]

Local Refinement

Idea: Take any greedy solution, then make it better.

2-OPT refinement:
- Take a cycle with \((a, b)\) and \((c, d)\)
- Replace with \((a, c)\) and \((b, d)\)