SI 335 Spring 2014: Problem Set 3

Due: Thursday, April 3

Your scheduled presentation time:

Group member:

Group member:

Group member:

Instructions: Review the course honor policy: you may not use any human sources outside your group, and must document anything you used that’s not on the course webpage.

This cover sheet must be the front page of what you hand in. Use separate paper for the your written solutions outline and make sure they are neatly done and in order. Staple the entire packet together.

Comments or suggestions about this problem set:

Comments or suggestions about the course so far:

Citations (be specific about websites):

Grading rubric:

A: Solution meets the stated requirements and is completely correct. Presentation is clear, confident, and concise.

B: The main idea of the solution is correct, and the presentation was fairly clear. There may be a few small mistakes in the solution, or some faltering or missteps in the explanation.

C: The solution is acceptable, but there are significant flaws or differences from the stated requirements. Group members have difficulty explaining or analyzing their proposed solution.

D: Group members fail to present a solution that correctly solves the problem. However, there is clear evidence of significant work and progress towards a solution.

F: Little to no evidence of progress towards understanding the problem or producing a correct solution.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Final assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
FrankenSort

Behold, your professor’s most beautiful creation:

```python
def frankenSort(A):
    n = len(A)
    m = ceil(n/4)

    if n <= 5:  # base case
        selectionSort(A)
    else:
        A[0 : 2*m] = frankenSort(A[0 : 2*m])  # sort first half

        for i in range(m, 2*m):
            swap(A, i, i+m)

        A[0 : 2*m] = frankenSort(A[0 : 2*m])  # sort first half again
        A[m : 3*m] = frankenSort(A[m : 3*m])  # sort the middle half

    return A
```

It’s a sorting algorithm that makes multiple recursive calls on different sub-arrays of the original array.

a) Explain how and why this algorithm works. You should go through a reasonable-sized example on paper. Think about where every element in the array belongs in the sorted order, and then how do you know the algorithm will get it there.

b) Determine the worst-case running time of this algorithm. You should write a recurrence relation and then solve it using MMA.

c) I want to know exactly how many swaps are performed by this algorithm. There are three places where you have to count swaps: in the call to selectionSort in the base case, inside the for loop on line 13, and in the recursive calls to frankenSort.

Fortunately the number of swaps performed by selectionSort on a size-n input is a simple function of n - look back to the solutions to the last problem on Problem Set 1 if you forget.

The number of swaps performed by frankenSort depends only on the size of the input, n. So we can define a function \(s(n) \) to be the total number of swaps - including all recursive calls - performed on step 13 for an input of length \(n \).

Here is a table for the first few values of \(s(n) \):

<table>
<thead>
<tr>
<th>(n)</th>
<th>(s(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>48</td>
</tr>
</tbody>
</table>
Come up with an algorithm to determine \(s(n) \), given the input size \(n \). Try to make your algorithm as fast as possible.

As a starting point, you could imagine just using the original frankenSort algorithm and adding a line inside the swap helper function that increments a global variable called count. That will work, but have the same running time as the algorithm itself. You should be able to come up with something (much) faster.

d) Analyze your algorithm from part (c) and determine a big-O bound on the worst-case running time.

e) Use your algorithm to compute a few values of \(s(n) \) for me. You can do it by hand or write an implementation of your algorithm; I don’t care either way. Try and compute:

- \(s(500) \)
- \(s(1000) \)
- \(s(12345) \)
- \(s(\text{each of your alpha number(s)}) \)
- \(s(\text{each of your alpha number(s) cubed}) \)

(The last one is a fairly large number. You can just write down the last 5 digits if you like.)

2 Road Trip Planning

2.1 Scenario

You are planning a road trip that will follow a certain route and stop in a bunch of towns along the way. You have determined how many days you’d like to spread the trip over, the exact sequence of towns (each of which has a place to sleep up for the night), and the distances between each consecutive pair of towns.

You want to break up the days of your road trip so that they are as balanced as possible. Now you know that the average distance per day will be the same regardless, since the total distance is already decided. Statistically, having a good balance means minimizing the variance of the distances per day, which is the same as minimizing the sum of the squares of the distances travelled in each day. If you’ve heard of something called a “least squares fit”, that’s essentially what we’re doing.

Therefore you are going to find which way of splitting up the days will minimize the sum of the squares of the distances travelled each day. For example, if your journey has 4 legs of 2, 5, 3, and 3 miles (in that order), and you have only 2 days for the trip, you have the following options:

Option A: 0 miles day 1, (2+5+3+3) miles day 2
Sum of squares: \(0^2 + 13^2 = 169 \)

Option B: 2 miles day 1, (5+3+3) miles day 2
Sum of squares: \(2^2 + 11^2 = 125 \)

Option C: (2+5) miles day 1, (3+3) miles day 2
Sum of squares: \(7^2 + 6^2 = 85 \)

Option D: (2+5+3) miles day 1, 3 miles day 2
Sum of squares: \(10^2 + 3^2 = 109 \)

Option E: (2+5+3+3) miles day 1, 0 miles day 2
Sum of squares: \(13^2 + 0^2 = 169 \)

In this example, the best choice would be to take the first two legs of the journey on day 1, and the last two legs on day 2.
2.2 Specifics

Your road trip itinerary has \(n \) legs, each represented by a numeric distance in miles. You have \(d \) days to complete the road trip.

So the input to your algorithm is a list of numbers of length \(n \): \([x_1, x_2, \ldots, x_n]\)

and the output is a \(d \) stopping points (each is an integer from 0 up to \(n \)): \([s_1, s_2, \ldots, s_d]\)

such that the sum of squares

\[
(x_1 + \cdots + x_{s_1})^2 + (x_{s_1+1} + \cdots + x_{s_2})^2 + \cdots + (x_{s_{d-1}+1} + \cdots + x_n)^2
\]

is as small as possible. In the example above, we had \(n = 4 \), \(d = 2 \), and the distances \([x_1, x_2, x_3, x_4] = [2, 5, 3, 3]\) as input.

The output optimal stopping points are \([s_1, s_2] = [2, 4]\).

2.3 Tasks

a) Devise an algorithm to determine the optimal road trip. Describe your algorithm in words, or using pseudocode, or both. It is your job to describe your algorithm as simply and as clearly as possible.

b) Analyze your algorithm and determine a big-Theta bound for the worst-case cost in terms of \(n \) and \(d \).

2.4 Hints and Comments

- The most important thing is that your algorithm is CORRECT and clearly explained. Correctness in this case means that your algorithm always finds the optimal solution. This means that, if you think of a way of speeding up the algorithm, but you’re not sure if it will still give the absolutely best solution every time, don’t do it!
- Of course, more points will be awarded to faster algorithms. You should try to make your algorithm as fast as possible in every case, particularly the worst case.
- Planning this trip is sort of like putting parentheses around the distances, grouping together each day. Try to solve this problem in a similar way to what we did for the matrix chain multiplication problem in class.
- Lao-tzu said, “The journey of a thousand miles begins with a single step”. Similarly, the road trip of \(n \) legs begins with a single day. You might want to structure your algorithm recursively by (at the top level) figuring out the optimal number of legs to take on day 1.
- I am not sure what the asymptotically optimal algorithm for this problem is. However, I assure you that it can be done in polynomial-time (not exponential) in terms of \(n \) and \(d \). Do your best!

3 Graph Problems

There are two problems on graphs here for you to solve. For each one, you should complete the following steps:

a) Describe the problem in graph theory terms. What do the nodes and edges in the graph represent? Is the graph going to be directed/undirected, weighted/unweighted, connected, acyclic, etc?

b) Come up with an algorithm to solve the problem, and try to make your algorithm as fast as possible.

c) Explain how your algorithm works and how it relates to any other graph algorithms we have looked at.

What you do doesn’t have to be a direct modification of another graph algorithm, but that is certainly a good place to start at least. You might want to give a verbal description as well as pseudocode so we know exactly what your algorithm does.

d) Analyze the worst-case running time of your algorithm.

e) Be prepared to demonstrate your algorithm on a new example.
3.1 Most Important Course

As you know, most college classes beyond year 1 are listed with certain prerequisites - courses that must be completed before you can take the next one. A single course can have multiple prerequisites, meaning that all of those prerequisites must be taken first, and it can have no prerequisites at all, meaning anybody can take it.

Given a list of courses and the prerequisites for each course, we want to determine the “most fundamental” course in the curriculum. This will be the course that serves as a prerequisite, either directly or indirectly, for the greatest number of other courses in list. Think of the most fundamental course as “the course that would screw up your schedule the most if you didn’t pass it”. This is an important question!

So for example, if you are a CS major then probably the most fundamental course for you is IC 210, since that serves as a prerequisite for IC 211, which is a prereq for IC 312, and one of these is a prereq for almost every other course in the major. But notice that Calc 1 is also a pretty fundamental course, since it’s a prereq for Calc II, which is in turn a prereq for a number of engineering and physics courses later on. Also observe that there might be some courses that are not connected at all to any others, such as HE 250: Literature of the Sea. It’s has no prerequisites, and it’s not a prerequisite for anything else. (Meaning, for the purposes of this problem, that it’s not very “fundamental”.)

Specifically, your input will be a list of \(n \) courses, and then for each course, a list of all the prerequisites for that course. You have to return the course that acts as a direct or indirect prerequisite for the greatest number of other courses. If there is a tie, your algorithm can return any one of the most fundamental courses.

Important: For the purposes of this problem, there are no co-requisites (courses that must be taken at the same time), and no alternates (where either one of a few courses would count as a prereq). Let’s keep it simple!

3.2 New Airline

You are an entrepreneur with just enough capital investment to start a new airline with a single airplane. Your task is to find a flight plan for which cities your single plane will fly around to every day. This plan needs to be a loop that visits some number of cities and returns to the starting point, so that it can start again and again without any extra flights required.

To help you make this determination, as input you have a list of \(n \) possible airports and \(m \) one-way flight connections between these airports.

Every airport \(u \) charges a fee for landing there, say \(c(u) \). And every flight connection \((u, v) \) offers a certain possible net revenue, say \(r(u, v) \). These \(n + m \) values are also given to you as input.

Your algorithm needs to determine if there is any profitable loop between the cities, where the total revenue minus the total airport charges is greater than zero. If there is a profitable loop, your algorithm should return the list of cities in that profitable loop (you can find any one, doesn’t have to be the best one). Otherwise your algorithm should return “NOT PROFITABLE” to indicate that your business plan can’t work.

Hint: Think about transforming the graph into one where there are only weights on the edges and not on the nodes. Some of these weights will be negative - and that’s very important as you think about which algorithms from class might apply to this problem.

Bonus: Of course finding any profitable route is not enough. Modify the algorithm so that it computes the best possible profit ratio \(r \) of revenue divided by expenses. Analyze the running time of this modified algorithm in terms of \(m, n, \) and \(r \).