Diversification Improves Interpolation

Mark Giesbrecht Daniel S. Roche

WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE
Symbolic Computation Group

ISSAC 2011
June 11, San Jose, California
Sparse Interpolation

The Problem

Given a **black box** for an unknown polynomial

\[f = c_1 x^{e_1} + c_2 x^{e_2} + \cdots + c_t x^{e_t}, \]

determine the coefficients \(c_i \) and exponents \(e_i \).

We are interested in two cases:

1. Coefficients come from a large, unchosen finite field.
2. Coefficients are approximations to complex numbers.

We first consider univariate interpolation over finite fields.
We will use the following black box model for univariate polynomials over a ring R:

The “Remainder Black Box”

$$g \in R[x] \quad \text{monic, square-free} \quad f \mod g$$

$$f \in R[x]$$

The cost of the evaluation is $O(M(\deg g))$.

This can be accomplished easily if f is given by an algebraic circuit, or by evaluating at roots of g (possibly over an extension of R).
Sparse interpolation algorithms over finite fields

Consider an unknown \(f \in \mathbb{F}_q[x] \) with \(t \) terms and degree \(d \). Assume \(q \gg d \) does not have any special properties.

- **Dense methods** (Newton/Waring/Lagrange): \(O^\sim(d) \) total cost.
- **de Prony’s method**
 (Ben-Or & Tiwari ’88, Kaltofen & Lakshman ’89):
 \(O(t) \) probes; computation requires \(O(t) \) discrete logarithms.
- **Garg & Schost ’09**: \(O^\sim(t^2 \log d) \) probes modulo degree-
 \(O^\sim(t^2 \log d) \) polynomials; total cost \(O^\sim(t^4 \log^2 d) \).
- **Ours**: \(O(\log d) \) probes modulo degree-
 \(O^\sim(t^2 \log d) \) polynomials; total cost \(O^\sim(t^2 \log^2 d) \).
Garg & Schost’s Algorithm

Consider (unknown) \(f = c_1 x^{e_1} + c_2 x^{e_2} + \cdots + c_t x^{e_t} \).

Idea: Evaluate \(f \mod x^p - 1 \) for a small prime \(p \).

This gives \(f_p = c_1 x^{e_1 \mod p} + c_2 x^{e_2 \mod p} + \cdots + c_t x^{e_t \mod p} \).

If \(p \) is “good”, then every \(e_i \mod p \) is distinct, and we have every coefficient and an unordered set \(\{e_i \mod p \mid 1 \leq i \leq t\} \).

Problem: How to correlate terms between different evaluations?
Garg & Schost’s Algorithm

Consider (unknown) \(f = c_1 x^{e_1} + c_2 x^{e_2} + \cdots + c_t x^{e_t} \).

Idea: Evaluate \(f \mod x^p - 1 \) for a small prime \(p \).

This gives \(f_p = c_1 x^{e_1 \mod p} + c_2 x^{e_2 \mod p} + \cdots + c_t x^{e_t \mod p} \).

If \(p \) is “good”, then every \(e_i \mod p \) is distinct, and we have every coefficient and an unordered set \(\{ e_i \mod p \mid 1 \leq i \leq t \} \).

Problem: How to correlate terms between different evaluations?

Consider the symmetric polynomial whose roots are the exponents: \(\Gamma(z) = (z - e_1)(z - e_2)\cdots(z - e_t) \in \mathbb{Z}[z]. \)

Coefficients of \(\Gamma \) have \(\Theta(t \log d) \) bits, so we need this many “good prime” evaluations. Then we must find the integer roots of \(\Gamma \).
Example 1 over $R = \mathbb{F}_{101}$

(unknown) $f = 49x^{42} + 46x^{30} + 7x^{27} \in \mathbb{F}_{101}[x]$

1. Evaluate $f(x)$ modulo $x^p - 1$ for small p:

$$f(x) \mod (x^7 - 1) = 7x^6 + 46x^2 + 49$$
$$f(x) \mod (x^{11} - 1) = 49x^9 + 46x^8 + 7x^5$$
Example 1 over $R = \mathbb{F}_{101}$

(unknown) $f = 49x^{42} + 46x^{30} + 7x^{27} \in \mathbb{F}_{101}[x]$

1. Evaluate $f(x)$ modulo $x^p - 1$ for small p:

\[
\begin{align*}
 f(x) \pmod{(x^7 - 1)} & = 7x^6 + 46x^2 + 49 \\
 f(x) \pmod{(x^{11} - 1)} & = 49x^9 + 46x^8 + 7x^5
\end{align*}
\]

2. Correlate terms using coefficients, determine exponents with Chinese remaindering:

\[
\begin{align*}
 &6 \mod 7, \ 5 \mod 11 \ \Rightarrow \ e_1 = 27 \\
 &2 \mod 7, \ 8 \mod 11 \ \Rightarrow \ e_2 = 30 \\
 &0 \mod 7, \ 9 \mod 11 \ \Rightarrow \ e_3 = 42
\end{align*}
\]
Example 2 over \(R = \mathbb{F}_{101} \)

\[
(\text{unknown}) \ f = 76x^{55} + 38x^{50} + 76x^{40} \in \mathbb{F}_{101}[x]
\]

1. Evaluate \(f(x) \) modulo \(x^p - 1 \) for small \(p \):

\[
\begin{align*}
 f(x) \mod (x^7 - 1) &= 76x^6 + 76x^5 + 38x^3 \\
 f(x) \mod (x^{11} - 1) &= 38x^8 + 76x^7 + 76
\end{align*}
\]
Example 2 over $R = \mathbb{F}_{101}$

(unknown) $f = 76x^{55} + 38x^{50} + 76x^{40} \in \mathbb{F}_{101}[x]$

1. Choose random $\alpha \in \mathbb{F}_{101}: \alpha = 18$
2. Evaluate $f(\alpha x) \bmod x^p - 1$ for small p:

$$f(\alpha x) \bmod (x^7 - 1) = 86x^6 + 47x^5 + 63x$$
$$f(\alpha x) \bmod (x^{11} - 1) = 47x^7 + 63x^6 + 86$$
Example 2 over $R = \mathbb{F}_{101}$

(unknown) $f = 76x^{55} + 38x^{50} + 76x^{40} \in \mathbb{F}_{101}[x]$

1. Choose random $\alpha \in \mathbb{F}_{101}$: $\alpha = 18$
2. Evaluate $f(\alpha x)$ modulo $x^p - 1$ for small p:

 $f(\alpha x) \mod (x^7 - 1) = 86x^6 + 47x^5 + 63x$

 $f(\alpha x) \mod (x^{11} - 1) = 47x^7 + 63x^6 + 86$

3. Correlate terms using coefficients, determine exponents with Chinese remaindering:

 $6 \mod 7$, $0 \mod 11 \implies e_1 = 55$

 $5 \mod 7$, $7 \mod 11 \implies e_2 = 40$

 $1 \mod 7$, $6 \mod 11 \implies e_3 = 50$
Example 2 over $R = \mathbb{F}_{101}$

(unknown) $f = 76x^{55} + 38x^{50} + 76x^{40} \in \mathbb{F}_{101}[x]$

1. Choose random $\alpha \in \mathbb{F}_{101}$: $\alpha = 18$
2. Evaluate $f(\alpha x)$ modulo $x^p - 1$ for small p:

 $f(\alpha x) \mod (x^7 - 1) = 86x^6 + 47x^5 + 63x$

 $f(\alpha x) \mod (x^{11} - 1) = 47x^7 + 63x^6 + 86$

3. Correlate terms using coefficients, determine exponents with Chinese remaindering:

 $6 \mod 7, 0 \mod 11 \Rightarrow e_1 = 55$

 $5 \mod 7, 7 \mod 11 \Rightarrow e_2 = 40$

 $1 \mod 7, 6 \mod 11 \Rightarrow e_3 = 50$

4. Compute original coefficients of $f(x)$:

 $c_1 = 86/\alpha^{55} = 76, \quad c_2 = 47/\alpha^{40} = 76, \quad c_3 = 63/\alpha^{50} = 38$
Diversification

- We call a polynomial with all coefficients distinct diverse.
- Diverse polynomials are easier to interpolate.
- We use randomization to create diversity.

Theorem

If $f \in \mathbb{F}_q[x]$, $q \gg t^2 \deg f$, and $\alpha \in \mathbb{F}_q$ is chosen randomly, then $f(\alpha x)$ is diverse with probability at least $1/2$.
Interpolation over Finite Fields using Diversification

Degree $\approx 1,000,000$
Interpolation over Finite Fields using Diversification

Degree ≈ 16 000 000
Interpolation over Finite Fields using Diversification

Degree $\approx 4\,000\,000\,000$
Approximate Sparse Interpolation over $\mathbb{C}[x]$

Approximate Black Box

\[
\begin{align*}
\zeta & \in \mathbb{C} \\
f & \in \mathbb{C}[x] \\
\epsilon & \in \mathbb{R}_{>0}
\end{align*}
\]

- Related work: (G., Labahn, Lee ’06, ’09), (Kaltofen, Yang, Zhi ’07), (Cuyt & Lee ’08), (Kaltofen, Lee, Yang ’11).
- Applications to homotopy methods (e.g., Sommese, Verschelde, Wampler ’04).
- Known algorithms are fast but not provably stable.
Some numerical ingredients

We show that the sparse interpolation problem is well-posed for evaluations at low-order roots of unity:

Theorem

Suppose $f, g \in \mathbb{C}[x], p$ is a randomly-chosen “good prime”, $\epsilon \in \mathbb{R}_{>0}$, and ω is a pth primitive root of unity.

If $|f(\omega^i) - g(\omega^i)| \leq \epsilon |f(\omega^i)|$ for $0 \leq i < p$, then $\|f - g\|_2 \leq \epsilon \|f\|_2$.

- To use Garg & Schost’s method, we need $f \mod (x^p - 1)$.
- We compute $f(\exp(2j\pi i/p))$ for $0 \leq j < p$ and then use the FFT.
- The relative error on $f \mod (x^p - 1)$ is the same as the relative error of each evaluation.
Example 3 over \mathbb{C}

\[
\text{(unknown)} \\
 f = (1.4 + 0.41i)x^{31} + (0.80 + 0.27i)x^{23} + (0.80 + 0.27i)x^7 \in \mathbb{C}[x]
\]
Example 3 over \mathbb{C}

(unknown)

$$f = (1.4 + 0.41i)x^{31} + (0.80 + 0.27i)x^{23} + (0.80 + 0.27i)x^{7} \in \mathbb{C}[x]$$

1. Choose $s \in \Omega(t^2) \Rightarrow s = 11$, random $k \in \{0, \ldots, s - 1\} \Rightarrow k = 5$, then set $\alpha = \exp(\pi ik/s)$
Example 3 over \mathbb{C}

(unknown)

$$f = (1.4 + 0.41i)x^{31} + (0.80 + 0.27i)x^{23} + (0.80 + 0.27i)x^7 \in \mathbb{C}[x]$$

1. Choose $s \in \Omega(t^2) \Rightarrow s = 11$, random $k \in \{0, \ldots, s - 1\} \Rightarrow k = 5$, then set $\alpha = \exp(\pi ik/s)$

2. Evaluate $f(\alpha x)$ modulo $x^p - 1$ for small p using FFT:

$$f(\alpha x) \mod (x^5 - 1) = (0.00 + .01i) + (.94 + 1.09i)x + (.083 + .84i)x^2 + (-.84 - .035i)x^3 + (0.01 + 0.00i)x^4$$

$$f(\alpha x) \mod (x^7 - 1) = (.085 + .84i) + (-.01 + .003i)x + (-.84 - .035i)x^2 + (.94 + 1.08i)x^3 + (-.002 + .01i)x^4 + (.01 + 0.00i)x^5 + (0.00 - .002i)x^6$$

3. Correlate terms with close coefficients, determine exponents with Chinese remaindering

4. Compute original coefficients of $f(x)$
Example 3 over \mathbb{C}

(unknown)

$$f = (1.4 + 0.41i)x^{31} + (0.80 + 0.27i)x^{23} + (0.80 + 0.27i)x^7 \in \mathbb{C}[x]$$

1. Choose $s \in \Omega(t^2) \Rightarrow s = 11$, random $k \in \{0, \ldots, s - 1\} \Rightarrow k = 5$,
then set $\alpha = \exp(\pi i k / s)$

2. Evaluate $f(\alpha x)$ modulo $x^p - 1$ for small p using FFT:

 $$f(\alpha x) \mod (x^5 - 1) = (0.00 + .01i) + (.94 + 1.09i)x + (.083 + .84i)x^2$$
 $$+ (-.84 - .035i)x^3 + (0.01 + 0.00i)x^4$$

 $$f(\alpha x) \mod (x^7 - 1) = (.085 + .84i) + (-.01 + .003i)x + (-.84 - .035i)x^2$$
 $$+ (.94 + 1.08i)x^3 + (-.002 + .01i)x^4$$
 $$+ (.01 + 0.00i)x^5 + (0.00 - .002i)x^6$$

3. Correlate terms with close coefficients, determine exponents with Chinese remaindering

4. Compute original coefficients of $f(x)$
Approximate interpolation algorithm

Theorem

Let \(f \in \mathbb{C}[x] \) with \(t \) terms and sufficiently large coefficients, \(s \gg t^2 \), and \(\omega \) an \(s \)-PRU. Then for a random \(k \in \{0, 1, \ldots, s - 1\} \), \(f(\omega^k x) \) has sufficiently separated coefficients (i.e., numerical diversity).

Cost: \(O^\sim(t^2 \log^2 \deg f) \) evaluations at low-order roots of unity and floating point operations.

Experimental stability (degree 1 000 000, 50 nonzero terms):

<table>
<thead>
<tr>
<th>Noise</th>
<th>Mean Error</th>
<th>Median Error</th>
<th>Max Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.440 e−16</td>
<td>4.402 e−16</td>
<td>8.003 e−16</td>
</tr>
<tr>
<td>±10^{-12}</td>
<td>1.113 e−14</td>
<td>1.119 e−14</td>
<td>1.179 e−14</td>
</tr>
<tr>
<td>±10^{-9}</td>
<td>1.149 e−11</td>
<td>1.191 e−11</td>
<td>1.248 e−11</td>
</tr>
<tr>
<td>±10^{-6}</td>
<td>1.145 e−8</td>
<td>1.149 e−8</td>
<td>1.281 e−8</td>
</tr>
</tbody>
</table>
Let $f \in \mathbb{R}[x_1, x_2, \ldots, x_n]$ with t terms and max degree $d - 1$.

Two techniques for extending a univariate sparse interpolation algorithm to multivariate (Kaltofen & Lee ’03):

Kronecker substitution. Create a black box for the univariate polynomial $\hat{f} = f(x, x^d, x^{d^2}, \ldots, x^{d^{n-1}})$, then interpolate \hat{f}.

Cost of our algorithm: $O(n^2 t^2 \log^2 d)$.

Zippel’s method. Go variable-by-variable; at each of n steps perform univariate interpolation t times on degree-d polynomials.

Cost of our algorithm: $O(nt^3 \log^2 d)$.
Future directions

Our algorithms perform more evaluations (probes) than $O(t)$, but do these at low-order roots of unity.

By randomized diversification, we avoid discrete logarithms and integer polynomial factorization.

Questions:

- Are discrete logarithms required to perform sparse interpolation using $O(t)$ evaluations over any finite field?
- Is there a trade-off between number of probes and computation cost/numerical stability?
- Can we weaken the diversification requirements (e.g., allow some collisions)?