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The Problem

Unknown

Function Output

What sparse polynomial is in here?

Algorithm input: Black box for a sparse polynomial

Algorithm output: Approximation to the hidden polynomial



Set-Up

The Problem

Ingredients

Our Algorithm

Unknown

Exact 9 € C — .
Function

—— Approximation to f(8)

?

What f(x) = c1x? + -+ + ¢,x% is in here?

Algorithm input: Way to evaluate f(x) = 3 .;<, aix*
Bounds D >d;and T >t
Algorithm output: Exponents dy, ..., d,
Coefficients c1,..., ¢,



Problem is Inherently Symbolic-Numeric!

Exact Approximate

Input Bounds Evaluations

Output Exponents Coefficients
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Factors Influencing Complexity

e Sparsity (number of nonzero terms)
o Degree (largest exponent)
¢ Precision (error in evaluations)
Our interest is in the hardest case:
High sparsity, high degree, low precision

We want to minimize the number of probes
and the post-processing cost.
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de Prony’s Method

Algorithm to interpolate exponential sums.
Involves structured linear system solving, polynomial root finding,
and computing logarithms.

Much attention in recent years:

e Ben-Or & Tiwari ('88)
Kaltofen & Lakshman (’89)
Kaltofen, Lakshman, Wiley ('90)
Kaltofen, Yang, Zhi ('07)
Cuyt & Lee ('08)
Giesbrecht, Labahn, Lee ('09)
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Properties of de Prony’s method

Drawbacks

e Not numerically stable
* Requires high precision
o (Discrete logarithms?)

Advantages

e Fewest number of evaluations: O(¢)
* Numerical stability can be helped with randomization
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Degree Reduction

Basic Idea: Given a sparse polynomial’s black box,
choose evaluations carefully to simulate a lower-degree polynomial

Typically, we get f mod (x” — 1) or f mod (x*~! - 1).

Some appearances:
o Blaser, Hardt, Lipton, Vishnoi ('09)
e Garg & Schost ('09)
e G.&R.('10)
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Garg & Schost’s Algorithm

Consider (unknown) f = c1x°! + ¢px® + -+ + cx“.

Idea: Evaluate f mod x” — 1 for a small prime p.

This gives f, = ¢ x4 MO4P 4 cpxe2modp ..y ¢ xe modp,

If p is “good”, then every e¢; mod p is distinct, and we have every
coefficient and an unordered set {e; mod p | 1 <i < t}.

Problem: How to correlate terms between different evaluations?
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Garg & Schost’s Algorithm

Consider (unknown) f = c1x°! + ¢px® + -+ + cx“.

Idea: Evaluate f mod x” — 1 for a small prime p.

This gives f, = ¢ x4 MO4P 4 cpxe2modp ..y ¢ xe modp,

If p is “good”, then every e¢; mod p is distinct, and we have every
coefficient and an unordered set {e; mod p | 1 <i < t}.

Problem: How to correlate terms between different evaluations?

Consider the symmetric polynomial whose roots are the
exponents: I'(z) = (z —e1)(z—e2) - (z — ¢;) € Z[Z].

Coefficients of I have ®(rlog d) bits, so we need this many “good
prime” evaluations. Then we must find the integer roots of I'.
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Making Garg & Schost Numeric

The previous algorithm was for finite fields.

For other domains, we need a way to compute
f mod (x — 1) for a chosen p.

This is easy in C: Evaluate f(1), f(w), ..., f(w’™") for w a p-PRU
Using the FFT, this is perfectly numerically stable!

Essentially, we are oversampling to get the best stability.
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Diversification

Goal: Avoid the need for computing the symmetric polynomial from
Garg & Schost.

o Define diverse polynomial as one with
pairwise-distinct coefficients.

o If @ is a random element (of a certain domain),
f(ax) is diverse w.h.p.

e We can of course recover f(x) from f(ax).

Result: Cost (number of probes and post-processing)
reduced from O(* log? d) down to O(#* log? d).
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Our Algorithm

This is work in progress!
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Improving on Diversification

O(t* log? d) is an improvement from Garg & Schost,
but quadratically more probes than de Prony.

New idea — Use the old idea!
Embed de Prony’s method inside our Garg & Schost-like method.

Instead of computing f(1), f(w), ...f(w”~") and using FFT,
we compute f(1), f(w),...,f(w* ") and use de Prony.
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Diversifying the Exponents
e Need w?,w®, ..., w" to be sufficiently separated.

Equivalent
mod p

Bad choice
of p or
p-PRU w:

PN
Vv
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Our Algorithm

Diversifying the Exponents
e Need w?,w®, ..., w" to be sufficiently separated.

p sufficiently
large,
w random
p-PRU:

PN
Vv
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Diversifying the Coefficients
e Needcy,cy,...,c to be sufficiently distinct — impossible!

Not diverse: <—“

Vv
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Diversifying the Coefficients
e Need c1l, (%, ..., cl% to be sufficiently distinct

Bad choice
of ¢:
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Our Algorithm

Diversifying the Coefficients
e Need c1l, (%, ..., cl% to be sufficiently distinct

Good choice
of £:
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Overview of Combined Algorithm

© Choose prime s € O(t*) and random s-PRU ¢

® Choose prime p € O(t* log d) and random p-PRU w

@ Evaluate f(1),f((w).f((Pw?), ... f(* 0

@ Recover f({x) mod (x’ — 1) using de Prony’s method
©® Correlate coefficients with exponent residues modulo p
0O Repeat Steps 2-5 O(log d) times

@ Recover exponents from modular residues by Chinese
remaindering
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Overview of Combined Algorithm

© Choose prime s € O(t*) and random s-PRU ¢

@® Choose prime p € O(t* log d) and random p-PRU w

© Evaluate f(1),f((w),f(w?), ... f(*Tw* )

@ Recover f({x) mod (x’ — 1) using de Prony’s method
©® Correlate coefficients with exponent residues modulo p
0O Repeat Steps 2-5 O(log d) times

@ Recover exponents from modular residues by Chinese
remaindering

These are the randomization steps.
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Results

Sparse interpolation algorithm featuring

e O(tlogd) probes at (nearly) fixed precision
— optimal in terms of total bit length

o O (t*logd) post-processing cost

Requires low precision, even at high degrees,
and with as few probes as possible.
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