
Set-Up Potential Approaches Our Algorithm Implementation

Parallel sparse interpolation using small primes

Mohamed Khochtali
Daniel S. Roche*

Xisen Tian

United States Naval Academy

Annapolis, Maryland, USA

PASCO 2015

Bath, UK, July 10, 2015

1 / 21



Set-Up Potential Approaches Our Algorithm Implementation

2 / 21



Set-Up Potential Approaches Our Algorithm Implementation

The Problem

Unknown
Function

Sample point Evaluation

What sparse polynomial is in here?

Algorithm input: Black box for a sparse polynomial
Bounds on the size of the polynomial

Algorithm output: List of nonzero coefficients and exponents

3 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Black Box Model (univariate version)
f ∈ Z[x]
f = c1xe1 + c2xe2 + · · · + ctxet

Black box input

q ∈ Z
h ∈ (Z/qZ)[z] g ∈ (Z/qZ)[z]

Black box output

f (h) mod g over (Z/qZ)[z]

4 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Black Box Model (multivariate version)
f ∈ Z[x1, x2 . . . , xn]
f = c1xe11

1 xe12
2 · · · x

e1n
n + · · · + ctx

et1
1 xet2

2 · · · x
etn
n

Black box input

q ∈ Z
h1, h2, . . . , hn ∈ (Z/qZ)[z] g ∈ (Z/qZ)[z]

Black box output

f (h1, h2, . . . , hn) mod g over (Z/qZ)[z]

4 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Brief History
“Big prime” methods
• Prony (1795)

• Blahut (1979)

• Zippel (1979)

• Ben-Or & Tiwari (1989)

• Kaltofen & Lakshman (1989)

• Javadi & Monagan (2010)

• van der Hoeven & Lecerf (2014)

“Small prime” methods
• Grigoriev & Karpinsky (1987)

• Garg & Schost (2009)

• R. & Giesbrecht (2011)

• Arnold, Giesbrecht, R. (2014)

5 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Big Prime Interpolation (Kaltofen 2010)

1. Choose q � deg f

2. Find PRU ω ∈ Z/qZ

3. Evaluate f (1), f (ω), . . . , f (ω2T−1)

Easy

4. Berlekamp-Massey to find Γ(z)

Hard

5. Compute roots ζ1, . . . , ζt of Γ

Hard

6. Compute discrete logs of ζi’s

Easy

7. Solve transposed Vandermonde system

Hard

The expensive parts

How easy to parallelize?

6 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Big Prime Interpolation (Kaltofen 2010)

1. Choose q � deg f

2. Find PRU ω ∈ Z/qZ

3. Evaluate f (1), f (ω), . . . , f (ω2T−1)

Easy

4. Berlekamp-Massey to find Γ(z)

Hard

5. Compute roots ζ1, . . . , ζt of Γ

Hard

6. Compute discrete logs of ζi’s

Easy

7. Solve transposed Vandermonde system

Hard

The expensive parts

How easy to parallelize?

6 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Big Prime Interpolation (Kaltofen 2010)

1. Choose q � deg f

2. Find PRU ω ∈ Z/qZ

3. Evaluate f (1), f (ω), . . . , f (ω2T−1) Easy

4. Berlekamp-Massey to find Γ(z) Hard

5. Compute roots ζ1, . . . , ζt of Γ Hard

6. Compute discrete logs of ζi’s Easy

7. Solve transposed Vandermonde system Hard

The expensive parts

How easy to parallelize?

6 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Small Primes Interpolation

1. Repeat O(log D) times:

Easy!

2. Choose q � max ci, p � T

3. Evaluate f (z) mod (zp − 1)

Hard

4. Save nonzero coefficients and exponents

5. Correlate exponents between the images

6. CRT to find actual exponents

Easy!

The expensive parts

How easy to parallelize?

7 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Small Primes Interpolation

1. Repeat O(log D) times:

Easy!

2. Choose q � max ci, p � T

3. Evaluate f (z) mod (zp − 1)

Hard

4. Save nonzero coefficients and exponents

5. Correlate exponents between the images

6. CRT to find actual exponents

Easy!

The expensive parts

How easy to parallelize?

7 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Small Primes Interpolation

1. Repeat O(log D) times: Easy!

2. Choose q � max ci, p � T

3. Evaluate f (z) mod (zp − 1) Hard

4. Save nonzero coefficients and exponents

5. Correlate exponents between the images

6. CRT to find actual exponents Easy!

The expensive parts

How easy to parallelize?

7 / 21



Set-Up Potential Approaches Our Algorithm Implementation

What about multivariate?

Option 1: Kronecker

f (x1, x2, . . . , xn)←→ f (z, zD, zD2
, . . . , zDn−1

)

Performed implicitly in the evaluations.

Option 2: Variable by variable

(Zippel ’79): Iterative
(Javadi & Monagan ’10): In parallel

8 / 21



Set-Up Potential Approaches Our Algorithm Implementation

What about multivariate?

Option 1: Kronecker

f (x1, x2, . . . , xn)←→ f (z, zD, zD2
, . . . , zDn−1

)

Performed implicitly in the evaluations.

Option 2: Variable by variable

(Zippel ’79): Iterative
(Javadi & Monagan ’10): In parallel

8 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Small Primes Algorithm

0. Choose random prime q, random α ∈ Z/qZ

1. Repeat� log D times in parallel:

2. Choose q � max ci, p � T

3. Evaluate f (z) mod (zp − 1)
4. Save nonzero coefficients and exponents

5. Correlate exponents between the images

6. CRT to find actual exponents

We only needed to parallelize the main loop.

9 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Parallel Small Primes Algorithm

0. Choose random prime q, random α ∈ Z/qZ

1. Repeat� log D times in parallel:

2. Choose q � max ci, p � T

3. Evaluate f (z) mod (zp − 1)
4. Save nonzero coefficients and exponents

5. Correlate exponents between the images

6. CRT to find actual exponents

We only needed to parallelize the main loop.

9 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Parallel Small Primes Algorithm

0. Choose random prime q, random α ∈ Z/qZ

1. Repeat� log D times in parallel:

2. Choose p � T

3. Evaluate f (αz) mod (zp − 1)
4. Save nonzero coefficients and exponents

5. Correlate exponents between the images

6. CRT to find actual exponents

Diversification trick (Giesbrecht & R. 2011)

9 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Parallel Small Primes Algorithm

0. Choose random prime q, random α ∈ Z/qZ

1. Repeat� log D times in parallel:

2. Choose p ∈ O(T log D)
3. Evaluate f (αz) mod (zp − 1)
4. Save nonzero coefficients and exponents

5. Correlate exponents between the images

6. CRT to find actual exponents

“OK primes” trick (Arnold, Giesbrecht, R. 2013)

9 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Parallel Small Primes Heuristic

0. Choose random prime q, random α ∈ Z/qZ

1. Repeat d` log De times in parallel:

2. Choose p ≈ kT

3. Evaluate f (αz) mod (zp − 1)
4. Save nonzero coefficients and exponents

5. Correlate exponents between the images

6. CRT to find actual exponents

Throw caution to the wind; k, ` determined experimentally

9 / 21



Set-Up Potential Approaches Our Algorithm Implementation

What is the communication?

Sent TO each process:
p, α, q, and access to the black box

Received FROM each process:
A (coeff, expon, prime) triple for each nonzero term

c? mod q c? mod q · · ·

e? mod p e? mod p · · ·

p p · · ·

Gathering the images:
List comes in sorted by the primes pi

We then sort by coefficients to gather exponent images.

10 / 21



Set-Up Potential Approaches Our Algorithm Implementation

What is the communication?

Sent TO each process:
p, α, q, and access to the black box

Received FROM each process:
A (coeff, expon, prime) triple for each nonzero term

c? mod q c? mod q · · ·

e? mod p e? mod p · · ·

p p · · ·

Gathering the images:
List comes in sorted by the primes pi

We then sort by coefficients to gather exponent images.

10 / 21



Set-Up Potential Approaches Our Algorithm Implementation

An example
0. Initial set-up

Given

Unknown f has n = 2 variables, max degree < 10,
and ≤ 3 nonzero terms.

• Choose q = 11 (for coefficient field)

• Choose α = 5 (for diversification)

• Choose small primes p1 = 7, p2 = 13, p3 = 17

11 / 21



Set-Up Potential Approaches Our Algorithm Implementation

An example
1. Parallel evaluation

Process 1 receives:
n = 2, D = 10, q = 11, α = 5, p = 7

• Evaluate f (5z, (5z)10) mod (z7 − 1)
• = 3z6 + 7z3 + 2z
• Add nonzero terms to the list

coefficient 3 7 2
exponent 6 3 1

prime 7 7 7

12 / 21



Set-Up Potential Approaches Our Algorithm Implementation

An example
1. Parallel evaluation

Process 1 receives:
n = 2, D = 10, q = 11, α = 5, p = 7

• Evaluate f (5z, (5z)10) mod (z7 − 1)
• = 3z6 + 7z3 + 2z

• Add nonzero terms to the list

coefficient 3 7 2
exponent 6 3 1

prime 7 7 7

12 / 21



Set-Up Potential Approaches Our Algorithm Implementation

An example
1. Parallel evaluation

Process 1 receives:
n = 2, D = 10, q = 11, α = 5, p = 7

• Evaluate f (5z, (5z)10) mod (z7 − 1)
• = 3z6 + 7z3 + 2z
• Add nonzero terms to the list

coefficient 3 7 2
exponent 6 3 1

prime 7 7 7

12 / 21



Set-Up Potential Approaches Our Algorithm Implementation

An example
1. Parallel evaluation

Process 2 receives:
n = 2, D = 10, q = 11, α = 5, p = 13

• Evaluate f (5z, (5z)10) mod (z13 − 1)
• = 10z7 + 2z4

• Add nonzero terms to the list

coefficient 3 7 2 10 2
exponent 6 3 1 7 4

prime 7 7 7 13 13

12 / 21



Set-Up Potential Approaches Our Algorithm Implementation

An example
1. Parallel evaluation

Process 3 receives:
n = 2, D = 10, q = 11, α = 5, p = 17

• Evaluate f (5z, (5z)10) mod (z17 − 1)
• = 2z9 + 7z8 + 3z3

• Add nonzero terms to the list

coefficient 3 7 2 10 2 2 7 3
exponent 6 3 1 7 4 9 8 3

prime 7 7 7 13 13 17 17 17

12 / 21



Set-Up Potential Approaches Our Algorithm Implementation

An example
2. Recovering f

Main process knows n = 2, q = 11, α = 5, and receives
coefficient 3 7 2 10 2 2 7 3
exponent 6 3 1 7 4 9 8 3

prime 7 7 7 13 13 17 17 17

• Sort the table by coefficients

• Perform CRT on each sufficiently-large group
e1 = 59 e2 = 20 e3 = 43

f (5z, (5z)10) = 7z59 + 3z20 + 2z43

• Undo diversification
f (z, z10) = 9z59 + z20 + 4z43

• Undo Kronecker
f (x, y) = 9x9y5 + y2 + 4x3y4

13 / 21



Set-Up Potential Approaches Our Algorithm Implementation

An example
2. Recovering f

Main process knows n = 2, q = 11, α = 5, and receives
coefficient 10 7 7 3 3 2 2 2
exponent 7 8 3 3 6 9 4 1

prime 13 17 7 17 7 17 13 7

• Sort the table by coefficients

• Perform CRT on each sufficiently-large group
e1 = 59 e2 = 20 e3 = 43

f (5z, (5z)10) = 7z59 + 3z20 + 2z43

• Undo diversification
f (z, z10) = 9z59 + z20 + 4z43

• Undo Kronecker
f (x, y) = 9x9y5 + y2 + 4x3y4

13 / 21



Set-Up Potential Approaches Our Algorithm Implementation

An example
2. Recovering f

Main process knows n = 2, q = 11, α = 5, and receives
coefficient 10 7 7 3 3 2 2 2
exponent 7 8 3 3 6 9 4 1

prime 13 17 7 17 7 17 13 7

• Sort the table by coefficients

• Perform CRT on each sufficiently-large group
e1 = 59 e2 = 20 e3 = 43

f (5z, (5z)10) = 7z59 + 3z20 + 2z43

• Undo diversification
f (z, z10) = 9z59 + z20 + 4z43

• Undo Kronecker
f (x, y) = 9x9y5 + y2 + 4x3y4

13 / 21



Set-Up Potential Approaches Our Algorithm Implementation

An example
2. Recovering f

Main process knows n = 2, q = 11, α = 5, and receives
coefficient 10 7 7 3 3 2 2 2
exponent 7 8 3 3 6 9 4 1

prime 13 17 7 17 7 17 13 7

• Sort the table by coefficients

• Perform CRT on each sufficiently-large group
e1 = 59 e2 = 20 e3 = 43

f (5z, (5z)10) = 7z59 + 3z20 + 2z43

• Undo diversification
f (z, z10) = 9z59 + z20 + 4z43

• Undo Kronecker
f (x, y) = 9x9y5 + y2 + 4x3y4

13 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Complexity analysis

Each of d`n lg De processes evaluates
modulo (zpi − 1), where pi ≈ kT.

In theory, we need ` ∈ O(1) and k ∈ O(n log D), resulting in
O(n2 log2 D) potential speedup of a O(n2T log2 D) algorithm.

Heuristically, k ∈ O(1), resulting in O(n log D) parallel speedup of a
O(nT log D) algorithm.

14 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Libraries

• FLINT used for dense arithmetic (evaluations)

• We made a small fmpz sparse type for FLINT

• Used Open MPI for parallelism
(more scalable than threads, but must be careful with
communication)

15 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Experiment 1

Benchmark copied from (van der Hoeven & Lecerf 2014):
Interpolating the product of m random 3-sparse polynomials,
each 20 variables, degree 40, single-precision coefficients.

We first compared our heuristic algorithm to Mathemagix with and
without parallelization.

16 / 21



Set-Up Potential Approaches Our Algorithm Implementation

17 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Experiment 2

Same benchmark with # of polynomials fixed at m = 6,
varying # of processes and the degree.

Hardware was limited:
Using Core i7, 6 cores, each hyper-threaded.

Measuring parallel speedup over the single-threaded version of our
code.

18 / 21



Set-Up Potential Approaches Our Algorithm Implementation

19 / 21



Set-Up Potential Approaches Our Algorithm Implementation

To-Do List

• Explore constants k, ` more deeply.
Try to balance larger `, smaller k

• Incorporate randomized Kronecker substitution
(Arnold & R. ’14)

• Run on more impressive hardware

• Incorporate with new sparse multiplication algorithm?

• Use for signal processing in exponential analysis?

20 / 21



Set-Up Potential Approaches Our Algorithm Implementation

Timings

vars terms maxdeg µ λ Mathemagix Ours (single) Ours (multi)
20 3 40 14 50 000 0.078 0.035 0.029
20 9 80 18 5 000 0.155 0.151 0.048
20 27 120 18 6 900 0.305 0.329 0.116
20 81 160 18 4 900 0.598 0.323 0.085
20 243 200 17 9 900 2.156 0.785 0.175
20 729 240 15 39 900 5.053 3.084 0.814
20 2187 280 14 80 050 13.333 8.714 2.225
20 6561 320 13 321 300 41.070 43.911 10.605

Thank you!
21 / 21


	Set-Up
	Potential Approaches
	Our Algorithm
	Implementation

