Parallel sparse interpolation using small primes

Mohamed Khochtali
Daniel S. Roche*
Xisen Tian

United States Naval Academy
Annapolis, Maryland, USA

PASCO 2015
Bath, UK, July 10, 2015
The Problem

Sample point → Unknown Function → Evaluation

What sparse polynomial is in here?

Algorithm input: Black box for a sparse polynomial
Bounds on the size of the polynomial

Algorithm output: List of nonzero coefficients and exponents
Black Box Model (univariate version)

\[f \in \mathbb{Z}[x] \]
\[f = c_1 x^{e_1} + c_2 x^{e_2} + \cdots + c_t x^{e_t} \]

Black box input

\[q \in \mathbb{Z} \]
\[h \in (\mathbb{Z}/q\mathbb{Z})[z] \]
\[g \in (\mathbb{Z}/q\mathbb{Z})[z] \]

Black box output

\[f(h) \mod g \text{ over } (\mathbb{Z}/q\mathbb{Z})[z] \]
Black Box Model (multivariate version)

\[f \in \mathbb{Z}[x_1, x_2 \ldots, x_n] \]
\[f = c_1 x_1^{e_{11}} x_2^{e_{12}} \cdots x_n^{e_{1n}} + \cdots + c_t x_1^{e_{t1}} x_2^{e_{t2}} \cdots x_n^{e_{tn}} \]

Black box input

\[q \in \mathbb{Z} \]
\[h_1, h_2, \ldots, h_n \in (\mathbb{Z}/q\mathbb{Z})[z] \]
\[g \in (\mathbb{Z}/q\mathbb{Z})[z] \]

Black box output

\[f(h_1, h_2, \ldots, h_n) \mod g \text{ over } (\mathbb{Z}/q\mathbb{Z})[z] \]
Brief History

“Big prime” methods

- Prony (1795)
- Blahut (1979)
- Zippel (1979)
- Ben-Or & Tiwari (1989)
- Kaltofen & Lakshman (1989)
- Javadi & Monagan (2010)
- van der Hoeven & Lecerf (2014)

“Small prime” methods

- Grigoriev & Karpinsky (1987)
- Garg & Schost (2009)
- R. & Giesbrecht (2011)
- Arnold, Giesbrecht, R. (2014)
Big Prime Interpolation (Kaltofen 2010)

1. Choose $q \gg \deg f$
2. Find PRU $\omega \in \mathbb{Z}/q\mathbb{Z}$
3. Evaluate $f(1), f(\omega), \ldots, f(\omega^{2T-1})$
4. Berlekamp-Massey to find $\Gamma(z)$
5. Compute roots ζ_1, \ldots, ζ_t of Γ
6. Compute discrete logs of ζ_i's
7. Solve transposed Vandermonde system
Big Prime Interpolation (Kaltofen 2010)

1. Choose $q \gg \deg f$
2. Find PRU $\omega \in \mathbb{Z}/q\mathbb{Z}$
3. Evaluate $f(1), f(\omega), \ldots, f(\omega^{2T-1})$
4. Berlekamp-Massey to find $\Gamma(z)$
5. Compute roots ζ_1, \ldots, ζ_t of Γ
6. Compute discrete logs of ζ_i's
7. Solve transposed Vandermonde system

The expensive parts
Big Prime Interpolation (Kaltofen 2010)

1. Choose $q \gg \deg f$
2. Find PRU $\omega \in \mathbb{Z}/q\mathbb{Z}$
3. Evaluate $f(1), f(\omega), \ldots, f(\omega^{2T-1})$ Easy
4. Berlekamp-Massey to find $\Gamma(z)$ Hard
5. Compute roots ζ_1, \ldots, ζ_t of Γ Hard
6. Compute discrete logs of ζ_i's Easy
7. Solve transposed Vandermonde system Hard

The expensive parts

How easy to parallelize?
Small Primes Interpolation

1. Repeat $O(\log D)$ times:
2. Choose $q \gg \max c_i$, $p \gg T$
3. Evaluate $f(z) \mod (z^p - 1)$
4. Save nonzero coefficients and exponents
5. Correlate exponents between the images
6. CRT to find actual exponents
Small Primes Interpolation

1. Repeat $O(\log D)$ times:
2. Choose $q \gg \max c_i, \quad p \gg T$
3. Evaluate $f(z) \mod (z^p - 1)$
4. Save nonzero coefficients and exponents
5. Correlate exponents between the images
6. CRT to find actual exponents

The expensive parts
Small Primes Interpolation

1. **Repeat** $O(\log D)$ times: \textbf{Easy!}
2. **Choose** $q \gg \max c_i, \quad p \gg T$
3. **Evaluate** $f(z) \mod (z^p - 1)$ \textbf{Hard}
4. **Save nonzero coefficients and exponents**
5. **Correlate exponents between the images**
6. **CRT to find actual exponents** \textbf{Easy!}

The expensive parts
How easy to parallelize?
What about multivariate?

Option 1: Kronecker

\[f(x_1, x_2, \ldots, x_n) \leftrightarrow f(z, z^D, z^{D^2}, \ldots, z^{D^{n-1}}) \]

Performed implicitly *in the evaluations.*
What about multivariate?

Option 1: Kronecker

\[
f(x_1, x_2, \ldots, x_n) \leftrightarrow f(z, z^D, z^{D^2}, \ldots, z^{D^{n-1}})
\]

Performed implicitly *in the evaluations.*

Option 2: Variable by variable

(Zippel ’79): Iterative
(Javadi & Monagan ’10): *In parallel*
Small Primes Algorithm

1. Repeat \(\gg \log D \) times in parallel:
2. Choose \(q \gg \max c_i, \quad p \gg T \)
3. Evaluate \(f(z) \mod (z^p - 1) \)
4. Save nonzero coefficients and exponents
5. Correlate exponents between the images
6. CRT to find actual exponents
Parallel Small Primes Algorithm

1. **Repeat** $\gg \log D$ times **in parallel**:
2. Choose $q \gg \max c_i$, $p \gg T$
3. Evaluate $f(z) \mod (z^p - 1)$
4. Save nonzero coefficients and exponents
5. Correlate exponents between the images
6. CRT to find actual exponents

We only needed to parallelize the main loop.
Parallel Small Primes Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>Choose random prime q, random $\alpha \in \mathbb{Z}/q\mathbb{Z}$</td>
</tr>
<tr>
<td>1.</td>
<td>Repeat $\gg \log D$ times in parallel:</td>
</tr>
<tr>
<td>2.</td>
<td>Choose $p \gg T$</td>
</tr>
<tr>
<td>3.</td>
<td>Evaluate $f(\alpha z) \mod (z^p - 1)$</td>
</tr>
<tr>
<td>4.</td>
<td>Save nonzero coefficients and exponents</td>
</tr>
<tr>
<td>5.</td>
<td>Correlate exponents between the images</td>
</tr>
<tr>
<td>6.</td>
<td>CRT to find actual exponents</td>
</tr>
</tbody>
</table>

Diversification trick (Giesbrecht & R. 2011)
Parallel Small Primes Algorithm

0. Choose random prime q, random $\alpha \in \mathbb{Z}/q\mathbb{Z}$

1. Repeat $\gg \log D$ times in parallel:

 2. Choose $p \in O(T \log D)$

 3. Evaluate $f(\alpha z) \mod (z^p - 1)$

 4. Save nonzero coefficients and exponents

 5. Correlate exponents between the images

 6. CRT to find actual exponents

 “OK primes” trick (Arnold, Giesbrecht, R. 2013)
Parallel Small Primes Heuristic

0. Choose random prime q, random $\alpha \in \mathbb{Z}/q\mathbb{Z}$

1. Repeat $\lceil \ell \log D \rceil$ times in parallel:
 2. Choose $p \approx kT$
 3. Evaluate $f(\alpha z) \mod (z^p - 1)$
 4. Save nonzero coefficients and exponents
 5. Correlate exponents between the images
 6. CRT to find actual exponents

Throw caution to the wind; k, ℓ determined experimentally
What is the communication?

Sent TO each process:

\(p, \alpha, q, \) and access to the black box

Received FROM each process:

A \((\text{coeff, expon, prime})\) triple for each nonzero term

\[
\begin{array}{ccc}
& c \mod q & c \mod q \\
& e \mod p & e \mod p \\
& p & p \\
\end{array}
\]
What is the communication?

Sent TO each process:
\(p, \alpha, q, \) and access to the black box

Received FROM each process:
A \((\text{coeff, expon, prime})\) triple for each nonzero term

\[
\begin{array}{ccc}
 c \mod q & c \mod q & \cdots \\
 e \mod p & e \mod p & \cdots \\
 p & p & \cdots \\
\end{array}
\]

Gathering the images:
List comes in sorted by the primes \(p_i \)
We then **sort by coefficients** to gather exponent images.
An example
0. Initial set-up

Given

Unknown f has $n = 2$ variables, max degree < 10, and ≤ 3 nonzero terms.

- Choose $q = 11$ (for coefficient field)
- Choose $\alpha = 5$ (for diversification)
- Choose small primes $p_1 = 7, p_2 = 13, p_3 = 17$
An example

1. Parallel evaluation

Process 1 receives:

\[n = 2, \quad D = 10, \quad q = 11, \quad \alpha = 5, \quad p = 7 \]
An example
1. Parallel evaluation

Process 1 receives:
\[n = 2, \quad D = 10, \quad q = 11, \quad \alpha = 5, \quad p = 7 \]

- Evaluate \(f(5z, (5z)^{10}) \mod (z^7 - 1) \)
- \[= 3z^6 + 7z^3 + 2z \]
An example

1. Parallel evaluation

Process 1 receives:

\[n = 2, \quad D = 10, \quad q = 11, \quad \alpha = 5, \quad p = 7 \]

- Evaluate \(f(5z, (5z)^{10}) \mod (z^7 - 1) \)
- \(= 3z^6 + 7z^3 + 2z \)
- Add nonzero terms to the list

<table>
<thead>
<tr>
<th>coefficient</th>
<th>3</th>
<th>7</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>exponent</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>prime</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
An example
1. Parallel evaluation

Process 2 receives:

\[n = 2, \quad D = 10, \quad q = 11, \quad \alpha = 5, \quad p = 13 \]

- Evaluate \(f(5z, (5z)^{10}) \mod (z^{13} - 1) \)
- \(= 10z^7 + 2z^4 \)
- Add nonzero terms to the list

<table>
<thead>
<tr>
<th>coefficient</th>
<th>3</th>
<th>7</th>
<th>2</th>
<th>10</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>exponent</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>prime</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>
An example

1. Parallel evaluation

Process 3 receives:

\[n = 2, \quad D = 10, \quad q = 11, \quad \alpha = 5, \quad p = 17 \]

- Evaluate \(f(5z, (5z)^{10}) \) mod \((z^{17} - 1)\)
- \[= 2z^9 + 7z^8 + 3z^3 \]
- Add nonzero terms to the list

<table>
<thead>
<tr>
<th>coefficient</th>
<th>3</th>
<th>7</th>
<th>2</th>
<th>10</th>
<th>2</th>
<th>2</th>
<th>7</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>exponent</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>prime</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>
An example

2. Recovering f

Main process knows $n = 2$, $q = 11$, $\alpha = 5$, and receives

<table>
<thead>
<tr>
<th>coefficient</th>
<th>3</th>
<th>7</th>
<th>2</th>
<th>10</th>
<th>2</th>
<th>2</th>
<th>7</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>exponent</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>prime</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>
An example

2. Recovering f

Main process knows $n = 2$, $q = 11$, $\alpha = 5$, and receives

<table>
<thead>
<tr>
<th>coefficient</th>
<th>10</th>
<th>7</th>
<th>7</th>
<th>3</th>
<th>3</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>exponent</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>prime</td>
<td>13</td>
<td>17</td>
<td>7</td>
<td>17</td>
<td>7</td>
<td>17</td>
<td>13</td>
<td>7</td>
</tr>
</tbody>
</table>

- Sort the table by coefficients
An example

2. Recovering f

Main process knows $n = 2$, $q = 11$, $\alpha = 5$, and receives

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>10</th>
<th>7</th>
<th>7</th>
<th>3</th>
<th>3</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponent</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Prime</td>
<td>13</td>
<td>17</td>
<td>7</td>
<td>17</td>
<td>7</td>
<td>17</td>
<td>13</td>
<td>7</td>
</tr>
</tbody>
</table>

- Sort the table by coefficients
- Perform CRT on each sufficiently-large group

$$e_1 = 59 \quad e_2 = 20 \quad e_3 = 43$$

$$f(5z, (5z)^{10}) = 7z^{59} + 3z^{20} + 2z^{43}$$
An example

2. Recovering f

Main process knows $n = 2, \quad q = 11, \quad \alpha = 5$, and receives

<table>
<thead>
<tr>
<th>coefficient</th>
<th>10</th>
<th>7</th>
<th>7</th>
<th>3</th>
<th>3</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>exponent</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>prime</td>
<td>13</td>
<td>17</td>
<td>7</td>
<td>17</td>
<td>7</td>
<td>17</td>
<td>13</td>
<td>7</td>
</tr>
</tbody>
</table>

- Sort the table by coefficients
- Perform CRT on each sufficiently-large group

\[
e_1 = 59 \quad e_2 = 20 \quad e_3 = 43
\]

\[
f(5z, (5z)^{10}) = 7z^{59} + 3z^{20} + 2z^{43}
\]

- Undo diversification

\[
f(z, z^{10}) = 9z^{59} + z^{20} + 4z^{43}
\]

- Undo Kronecker

\[
f(x, y) = 9x^9y^5 + y^2 + 4x^3y^4
\]
Complexity analysis

Each of $\lceil \ell n \lg D \rceil$ processes evaluates modulo $(z^{p_i} - 1)$, where $p_i \approx kT$.

In theory, we need $\ell \in O(1)$ and $k \in O(n \log D)$, resulting in $O(n^2 \log^2 D)$ potential speedup of a $O(n^2 T \log^2 D)$ algorithm.

Heuristically, $k \in O(1)$, resulting in $O(n \log D)$ parallel speedup of a $O(nT \log D)$ algorithm.
Libraries

- FLINT used for dense arithmetic (evaluations)
- We made a small `fmpz_sparse` type for FLINT
- Used Open MPI for parallelism (more scalable than threads, but must be careful with communication)
Experiment 1

Benchmark copied from (van der Hoeven & Lecerf 2014): Interpolating the product of m random 3-sparse polynomials, each 20 variables, degree 40, single-precision coefficients.

We first compared our heuristic algorithm to Mathemagix with and without parallelization.
Experiment 2

Same benchmark with # of polynomials fixed at $m = 6$, varying # of processes and the degree.

Hardware was limited:
Using Core i7, 6 cores, each hyper-threaded.

Measuring parallel speedup over the single-threaded version of our code.
To-Do List

- Explore constants k, ℓ more deeply.

 Try to balance larger ℓ, smaller k

- Incorporate randomized Kronecker substitution
 (Arnold & R. ’14)

- Run on more impressive hardware

- Incorporate with new sparse multiplication algorithm?

- Use for signal processing in exponential analysis?
Timings

<table>
<thead>
<tr>
<th>vars</th>
<th>terms</th>
<th>maxdeg</th>
<th>μ</th>
<th>λ</th>
<th>Mathemagix</th>
<th>Ours (single)</th>
<th>Ours (multi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3</td>
<td>40</td>
<td>14</td>
<td>50000</td>
<td>0.078</td>
<td>0.035</td>
<td>0.029</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>80</td>
<td>18</td>
<td>5000</td>
<td>0.155</td>
<td>0.151</td>
<td>0.048</td>
</tr>
<tr>
<td>20</td>
<td>27</td>
<td>120</td>
<td>18</td>
<td>6900</td>
<td>0.305</td>
<td>0.329</td>
<td>0.116</td>
</tr>
<tr>
<td>20</td>
<td>81</td>
<td>160</td>
<td>18</td>
<td>4900</td>
<td>0.598</td>
<td>0.323</td>
<td>0.085</td>
</tr>
<tr>
<td>20</td>
<td>243</td>
<td>200</td>
<td>17</td>
<td>9900</td>
<td>2.156</td>
<td>0.785</td>
<td>0.175</td>
</tr>
<tr>
<td>20</td>
<td>729</td>
<td>240</td>
<td>15</td>
<td>39900</td>
<td>5.053</td>
<td>3.084</td>
<td>0.814</td>
</tr>
<tr>
<td>20</td>
<td>2187</td>
<td>280</td>
<td>14</td>
<td>80050</td>
<td>13.333</td>
<td>8.714</td>
<td>2.225</td>
</tr>
<tr>
<td>20</td>
<td>6561</td>
<td>320</td>
<td>13</td>
<td>321300</td>
<td>41.070</td>
<td>43.911</td>
<td>10.605</td>
</tr>
</tbody>
</table>

Thank you!