Proofs of bounds on the “hop” algorithm for searching worms.

Note: Two pages prove # hops for a worm of length \(l \) is \(\Omega(\sqrt{l}) \) and \(O(l^{2/3}) \).

1. Consider a worm of length \(l \).

2. Note than in an infinite grid, the number of squares at distance \(d > 0 \) from a given square is \(4d \).

3. Consider a traversal of a worm made by the “hop” algorithm in searching for a square not actually in the worm. If \(n \) is the longest hop in a traversal and \(H \) the number of hops, we have that

\[
H \leq \sum_{d=1}^{n} 4d = 4 \left(\frac{n(n+1)}{2} \right) = 2n^2 + 2n,
\]

because you can’t have more hops of length \(d \) than there are squares at distance \(d \) from the target \((x, y)\), and there are exactly \(4d \) squares at distance \(d \) from \((x, y)\). Similarly, the worm body length satisfies

\[
l \geq \sum_{d=1}^{n} 4d \cdot d = 4 \sum_{d=1}^{n} d^2 = \Theta(n^3), \quad \text{i.e. } l = \Omega(n^3).
\]

4. **Theorem:** In an \(H \)-hop traversal, the longest hop, \(n \), satisfies

\[
n \geq \left\lceil -1 + \sqrt{1 + 2H} \right\rceil.
\]

Proof: From the above, we know that \(H \leq 2n^2 + 2 \), which we can rewrite as \(n^2 + n - H/2 \geq 0 \). Of course we’re only interested in positive values of \(n \), and by the quadratic formula the only positive root of \(n^2 + n - H/2 \) is \(-1 + \sqrt{1 + 2H} \) and therefore \(n \geq -1 + \sqrt{1 + 2H} \). Finally, since \(n \) is an integer, we get

\[
n \geq \left\lceil -1 + \sqrt{1 + 2H} \right\rceil.
\]

5. Combining the two previous results, \(l = \Omega(n^3) \) and \(\left\lceil -1 + \sqrt{1 + 2H}/2 \right\rceil \)
we get

\[
l = \Omega \left(\left(-1 + \sqrt{1 + 2H}/2 \right)^3 \right) = \Omega \left(H^{3/2} \right).
\]

6. Thus, by the def. of \(\Omega \), for some constant \(a > 0 \), when \(H \) is large we have

\[
l \geq aH^{3/2} \quad \text{which means } (1/a)^{2/3} l^{2/3} \geq H \quad \text{which means } H = O\left(l^{2/3}\right).
\]

\(^1\)See page 1060 of the textbook.
Consider a worm that is wrapped around cell \((x, y)\), so that it spirals away. We should describe this a bit precisely. Let a \textit{d-square} be the square of cells \((i, j)\) formed by the rows \(j = x + d\) and \(j = x - d\), and the columns \(i = x + d\) and \(i = x - d\). The worm starts at cell \((x, y - 1)\) and moves counter-clockwise around the 1-square until it uses up all the cells in the 1-square. Then it crosses into the 2-square and moves counter-clockwise around the 2-square until it uses up all those squares. We’ll call this a “spiral worm”.

Theorem: The “hop” algorithm makes \(\Theta(\sqrt{n})\) hops in traversing the spiral worm around the point \((x, y)\) it is searching for.

Proof: First note that a \textit{d}-square consists of \(8d\) cells. This may take a bit of thinking to convince yourself of. Next note the distance of any cell in a \textit{d}-square from \((x, y)\) is between \(d\) and \(2d\).

Consider your last hop from a cell in a \textit{d}-square. The hop length is at most \(2d\). Since that is less than the \(8d\) cells that make up the \((d + 1)\)-square you move into, you end your hop in the \((d + 1)\)-square (as opposed to moving all the way around and out of it during that single hop). So, if you land in a \textit{d}-square, you will eventually land in a \((d + 1)\)-square. Since our first hop lands in a 1-square, induction tells us that we land in every \textit{d}-square the worm fills up.

So we have at least one landing in every \textit{d}-square filled up by the worm, and clearly no more than 8, since each jump has length at least \(d\) and there are only \(8d\) cells in the \textit{d}-square. If the worm fills up the \textit{d}-squares from \(d = 1..k\). Then the number of hops, \(H\), satisfies

\[
k \leq H \leq 8k + 7, \quad ^{2}
\]

i.e. \(H = \Theta(k)\). Meanwhile, the worm body has length \(l\), where

\[
l = \sum_{d=1}^{k} 8d + \text{spillover} = 4k(k + 1) + \text{spillover}
\]

which means \(k = \Theta(\sqrt{l})\). We have \(H = \Theta(k)\) and \(k = \Theta(\sqrt{l})\), so \(H = \Theta(\sqrt{l})\).

Since we proved the number of hops is \(\Theta(\sqrt{l})\) for a particular worm configuration, i.e. the spiral, the worst case can’t be better and we get that the “hop” algorithm is \(\Omega(\sqrt{l}n)\).

\(^{2}\)The +7 is because the worm might fill some, though not all, of the \((k + 1)\)-square.