Q E P C A D - The Positive-Definite Quartic Problem

valiant[16] [~/]> qepcad
=======================================================
                Quantifier Elimination                 
                          in                           
            Elementary Algebra and Geometry            
                          by                           
      Partial Cylindrical Algebraic Decomposition      
                                                       
               Version B 0.1, 30 Jul 2002
                                                       
                          by                           
                       Hoon Hong                       
                  (hhong@math.ncsu.edu)                
                                                       
With contributions by: Christopher W. Brown, George E. 
Collins, Mark J. Encarnacion, Jeremy R. Johnson        
Werner Krandick, Richard Liska, Scott McCallum,        
Nicolas Robiduex, and Stanly Steinberg                 
=======================================================
Enter an informal description  between '[' and ']':
[ The positive-definite quartic problem ]
Enter a variable list:
(a,b,c,d,x)
Enter the number of free variables:
4
Enter a prenex formula:
(Ax)[ x^4 + a x^3 + b x^2 + c x + d > 0 ].

=======================================================

Before Normalization >
go

Before Projection (x) >
go

Before Choice >
go

Before Solution >
pdq

CAD is not projection definable.

Before Solution >
sol E

An equivalent quantifier-free formula:

d > _root_1 256 d^3 - 192 a c d^2 - 128 b^2 d^2 + 144 
a^2 b d^2 - 27 a^4 d^2 + 144 b c^2 d - 6 a^2 c^2 d - 
80 a b^2 c d + 18 a^3 b c d + 16 b^4 d - 4 a^2 b^3 d - 
27 c^4 + 18 a b c^3 - 4 a^3 c^3 - 4 b^3 c^2 + a^2 b^2 
c^2 /\ [ 108 c^2 - 108 a b c + 27 a^3 c + 32 b^3 - 9 a^2 
b^2 > 0 \/ d > _root_-1 256 d^3 - 192 a c d^2 - 128 b^2 
d^2 + 144 a^2 b d^2 - 27 a^4 d^2 + 144 b c^2 d - 6 a^2 
c^2 d - 80 a b^2 c d + 18 a^3 b c d + 16 b^4 d - 4 a^2 
b^3 d - 27 c^4 + 18 a b c^3 - 4 a^3 c^3 - 4 b^3 c^2 + 
a^2 b^2 c^2 ]


Before Solution >
sol T
An equivalent quantifier-free formula:

256 d^3 - 192 a c d^2 - 128 b^2 d^2 + 144 a^2 b d^2 - 
27 a^4 d^2 + 144 b c^2 d - 6 a^2 c^2 d - 80 a b^2 c d + 
18 a^3 b c d + 16 b^4 d - 4 a^2 b^3 d - 27 c^4 + 18 a b 
c^3 - 4 a^3 c^3 - 4 b^3 c^2 + a^2 b^2 c^2 >= 0 /\ [ [ 
108 c^2 - 108 a b c + 27 a^3 c + 32 b^3 - 9 a^2 b^2 > 0 
/\ 384 d^2 - 192 a c d - 128 b^2 d + 144 a^2 b d - 27 
a^4 d + 72 b c^2 - 3 a^2 c^2 - 40 a b^2 c + 9 a^3 b c + 
8 b^4 - 2 a^2 b^3 <= 0 ] \/ [ 256 d^3 - 192 a c d^2 - 
128 b^2 d^2 + 144 a^2 b d^2 - 27 a^4 d^2 + 144 b c^2 d - 
6 a^2 c^2 d - 80 a b^2 c d + 18 a^3 b c d + 16 b^4 d - 
4 a^2 b^3 d - 27 c^4 + 18 a b c^3 - 4 a^3 c^3 - 4 b^3 
c^2 + a^2 b^2 c^2 > 0 /\ 384 d^2 - 192 a c d - 128 b^2 
d + 144 a^2 b d - 27 a^4 d + 72 b c^2 - 3 a^2 c^2 - 40 a 
b^2 c + 9 a^3 b c + 8 b^4 - 2 a^2 b^3 >= 0 /\ 768 d - 192 
a c - 128 b^2 + 144 a^2 b - 27 a^4 >= 0 ] \/ [ 108 c^2 - 
108 a b c + 27 a^3 c + 32 b^3 - 9 a^2 b^2 >= 0 /\ 256 
d^3 - 192 a c d^2 - 128 b^2 d^2 + 144 a^2 b d^2 - 27 a^4 
d^2 + 144 b c^2 d - 6 a^2 c^2 d - 80 a b^2 c d + 18 a^3 b 
c d + 16 b^4 d - 4 a^2 b^3 d - 27 c^4 + 18 a b c^3 - 4 a^3 
c^3 - 4 b^3 c^2 + a^2 b^2 c^2 > 0 ] ]


Before Solution >
quit
Quitting the QEPCAD system... Bye!
valiant[17] [~/]> 

This is a classic quantifier elimination benchmark problem. It asks for a characterization of all monic polynomials in x of degree 4 that are positive for all x values. As a Q.E. problem, this is: (Ax)[ x^4 + a x^3 + b x^2 + c x + d > 0 ]. One interesting thing about this problem is that when the McCallum Projection is used, the resulting CAD is not projection definable, meaning that a solution formula in the usual sense (Tarski Formula) cannot be constructed using only those polynomials appearing in the projection factor set. Since the only polynomials we know anything about are those in the projection factor set, this is a problem. There are two solutions.

  1. Expand the language in which solution formulas may be expressed.
  2. Add polynomials to the projection factor set.
Both of these are available with the solution-extension command. For a formula in an expanded language give:
solution-extension E
The extended language includes references to "indexed roots" of polynomial. The expression "_root_k P(x)" means the |k|th root (not counting multiplicities) of P(x) counting left-to-right if k > 0 and right-to-left if k < 0. (more on the extended language) If you really want a solution in the language of Taski Formulas, give the command:
solution-extension T
This will add polynomials to the projection factor set (which may be an expensive operation!) and construct a solution formula as soon as it is able.

The command pdq, for "projection definability query" will tell you if the CAD of free-variable space is projection definable.


Christopher W Brown
Last modified: Wed Jul 31 15:27:36 EDT 2002