Using CAD Effectively

- Limitations of CAD
- Implementations of CAD
- Optimizing CAD for specific problems or problem classes
Limitations

- Complexity: Doubly exponential in the number of variables. Constructing a CAD via Collins’ original algorithm takes time \((2n)^{2r+8} m^{2r+6} d^3\) where \(r = \#\) of variables, \(n = \max\) degree of input in any variable, \(m = \#\) of input polynomials, \(d = \max\) bitlength of coefficients.

- Practical Observations:
 - random input is very bad!
 - non-random input is often not so bad, since the polynomials encountered in projection tend to factor a lot
 - specializing projection and lifting to specific input types often ameliorates the high complexity
Implementations

• QEPCAD — written mostly by Hoon Hong, but with contributions by many others, including George Collins.

• QEPCAD B — based on QEPCAD but with many extensions and improvements.

• RLCAD — due to Andreas Seidl & Thomas Sturm, part of the Redlog system.

• Mathematica’s CAD — written by Adam Strzeboński.
Using CAD to Solve Problems Efficiently

1. Variable Ordering

2. Prepare input - break into pieces, do trivial eliminations by hand, etc.

3. Partial CAD

4. Special case of Partial CAD: full-dimensional cells only

5. Go beyond ∃ and ∀: Use the structure of CADs
The variable ordering you use can make a big difference!

Project \(\{ y^2 - x + 1, y^3 - y + x \} \) with order \(x \prec y \) and get ...
Variable Ordering

The variable ordering you use can make a big difference!

Project \(\{y^2 - x + 1, y^3 - y + x\} \) with order \(x \prec y \) and get ...

\[\{x - 1, 27x^2 - 4, x^3 - 6x^2 + 8x - 4\} \]
Variable Ordering

The variable ordering you use can make a big difference!

Project \(\{y^2 - x + 1, y^3 - y + x\} \) with order \(x \prec y \) and get ...

\[\{x - 1, 27x^2 - 4, x^3 - 6x^2 + 8x - 4\} \]

Project \(\{y^2 - x + 1, y^3 - y + x\} \) with order \(y \prec x \) and get ...

C. W. Brown, U.S. Naval Academy
Variable Ordering

The variable ordering you use can make a big difference!

Project \(\{ y^2 - x + 1, y^3 - y + x \} \) with order \(x \prec y \) and get ...

\[
\{ x - 1, 27x^2 - 4, x^3 - 6x^2 + 8x - 4 \}
\]

Project \(\{ y^2 - x + 1, y^3 - y + x \} \) with order \(y \prec x \) and get ...

\[
\{ y^3 + y^2 - y + 1 \}
\]
More on Variable Orderings

- The problem may constrain orderings.

- Example of a simple heuristic:
 1. Descending order by degree of variable, breaking ties with
 2. Descending order by highest total-degree term in which the variable appears, breaking ties with
 3. Descending order by number of terms containing the variable

- The technical report “Efficient Projection Orders for CAD”, Dolzmann, Seidl & Sturm, examines problem and proposes a greedy algorithm for constructing good projection orders.
Let \(C_1 \) and \(C_2 \) be circles whose centers are 10 units apart and whose radii are 1 and 3. Find, with proof, the locus of all points \(M \) for which there exist points \(X \) on \(C_1 \) and \(Y \) on \(C_2 \) such that \(M \) is the midpoint of the line segment \(XY \).

—Recent Putnam Question

\[
\exists x_1, y_1, x_2, y_2 \left[x_1^2 + y_1^2 - 1 = 0 \land (x_2 - 10)^2 + y_2^2 - 9 = 0 \land x = \frac{x_1 + x_2}{2} \land y = \frac{y_1 + y_2}{2} \right]
\]
Let C_1 and C_2 be circles whose centers are 10 units apart and whose radii are 1 and 3. Find, with proof, the locus of all points M for which there exist points X on C_1 and Y on C_2 such that M is the midpoint of the line segment XY.

—Recent Putnam Question

\[\exists x_1, y_1, x_2, y_2 [x_1^2 + y_1^2 - 1 = 0 \land (x_2 - 10)^2 + y_2^2 - 9 = 0 \land x = \frac{x_1 + x_2}{2} \land y = \frac{y_1 + y_2}{2}] \]

Substitute $x_2 = 2x + x_1$ and $y_2 = 2y + y_1$, producing:

\[\exists x_1, y_1 [x_1^2 + y_1^2 - 1 = 0 \land (2x - x_1 - 10)^2 + (2y - y_1)^2 - 9 = 0]. \]
Prepare Input: Make Trivial Substitutions

Let C_1 and C_2 be circles whose centers are 10 units apart and whose radii are 1 and 3. Find, with proof, the locus of all points M for which there exist points X on C_1 and Y on C_2 such that M is the midpoint of the line segment XY.

—Recent Putnam Question

$$\exists x_1, y_1, x_2, y_2 [x_1^2 + y_1^2 - 1 = 0 \land (x_2 - 10)^2 + y_2^2 - 9 = 0 \land x = \frac{x_1 + x_2}{2} \land y = \frac{y_1 + y_2}{2}]$$

Substitute $x_2 = 2x + x_1$ and $y_2 = 2y + y_1$, producing:

$$\exists x_1, y_1 [x_1^2 + y_1^2 - 1 = 0 \land (2x - x_1 - 10)^2 + (2y - y_1)^2 - 9 = 0].$$
Prepare Input: Break Problems into Pieces

\[\exists c \left[ab = b + 1 - c^2 \land 2(a + b)c^2 - b^2 + c - 1 = 0 \land a^2 + b^2 + c^2 \leq 4 \right] \]
Prepare Input: Break Problems into Pieces

\[\exists c[ab = b + 1 - c^2 \land 2(a + b)c^2 - b^2 + c - 1 = 0 \land a^2 + b^2 + c^2 \leq 4] \]

Solving for \(a \) and substituting requires distinguishing cases \(b \neq 0 \) and \(b = 0 \):

\[
\exists c \left[\begin{array}{l}
 b \neq 0 \land 2\left(\frac{b+1-c^2}{b} + b\right)c^2 - b^2 + c - 1 = 0 \land \left(\frac{b+1-c^2}{b}\right)^2 + b^2 + c^2 \leq 4 \\
 \lor \\
 b = 0 \land 0 = 1 - c^2 \land 2ac^2 + c - 1 = 0 \land a^2 + c^2 \leq 4
\end{array} \right]
\]
Prepare Input: Break Problems into Pieces

\[\exists c \left[ab = b + 1 - c^2 \land 2(a + b)c^2 - b^2 + c - 1 = 0 \land a^2 + b^2 + c^2 \leq 4 \right] \]

Solving for \(a \) and substituting requires distinguishing cases \(b \neq 0 \) and \(b = 0 \):

\[\exists c \left[\begin{array}{l} b \neq 0 \land 2\left(\frac{b+1-c^2}{b}\right) + b\right)c^2 - b^2 + c - 1 = 0 \land \left(\frac{b+1-c^2}{b}\right)^2 + b^2 + c^2 \leq 4 \land \\
\quad \lor \quad b = 0 \land 0 = 1 - c^2 \land 2ac^2 + c - 1 = 0 \land a^2 + c^2 \leq 4 \end{array} \right] \]

Instead of solving this problem with CAD directly, split it into:

\[\exists c \left[\begin{array}{l} b \neq 0 \land 2\left(\frac{b+1-c^2}{b}\right) + b\right)c^2 - b^2 + c - 1 = 0 \land \left(\frac{b+1-c^2}{b}\right)^2 + b^2 + c^2 \leq 4 \land \\
\quad \lor \quad b = 0 \land \exists c \left[0 = 1 - c^2 \land 2ac^2 + c - 1 = 0 \land a^2 + c^2 \leq 4 \right] \end{array} \right] \]
Partial CAD

- Collins & Hong introduced *Partial CAD*.

- Partial CAD is basically a lazy approach to lifting.
• Collins & Hong introduced *Partial CAD*.

• Partial CAD is basically a lazy approach to lifting.
Partial CAD

- Collins & Hong introduced *Partial CAD*.
- Partial CAD is basically a lazy approach to lifting.
Partial CAD & Quantifier Elimination

- A CAD data-structure is like a tree. Propagating \exists and \forall is like AI search in that tree. We can consider different search strategies too.

Example: $\exists y \forall z \ldots$
Partial CAD & Quantifier Elimination

• A CAD data-structure is like a tree. Propagating \exists and \forall is like AI search in that tree. We can consider different search strategies too.

Example: $\exists y \forall z \ldots$
Partial CAD & Quantifier Elimination

- A CAD data-structure is like a tree. Propagating \exists and \forall is like AI search in that tree. We can consider different search strategies too.

Example: $\exists y \forall z \ldots$
Partial CAD & Quantifier Elimination

- A CAD data-structure is like a tree. Propagating \exists and \forall is like AI search in that tree. We can consider different search strategies too.

Example: $\exists y \forall z \ldots$
A CAD data-structure is like a tree. Propagating \exists and \forall is like AI search in that tree. We can consider different search strategies too.

Example: $\exists y \forall z \ldots$
Partial CAD & Quantifier Elimination

- A CAD data-structure is like a tree. Propagating \exists and \forall is like AI search in that tree. We can consider different search strategies too.

Example: $\exists y \forall z \ldots$
A CAD data-structure is like a tree. Propagating \exists and \forall is like AI search in that tree. We can consider different search strategies too.

Example: $\exists y \forall z \ldots$
Partial CAD & Quantifier Elimination

- A CAD data-structure is like a tree. Propagating \exists and \forall is like AI search in that tree. We can consider different search strategies too.

Example: $\exists y \forall z \ldots$
Partial CAD & Quantifier Elimination

- A CAD data-structure is like a tree. Propagating \exists and \forall is like AI search in that tree. We can consider different search strategies too.

Example: $\exists y \forall z \ldots$
Partial CAD & Quantifier Elimination

- A CAD data-structure is like a tree. Propagating \exists and \forall is like AI search in that tree. We can consider different search strategies too.

Example: $\exists y \forall z \ldots$
Partial CAD: Full dimensional cells

- Special case of partial CAD: only lift over full dimensional cells. Particularly desirable because:

 1. No algebraic number computations.
 2. Projection is simpler.

 Huge reduction in computing time in most cases! Very easy to implement!

- McCallum and Strzebonski both applied this idea to solving systems of strict polynomial inequalities, where the solution set is open.

- Could consider new quantifiers “for all but finitely many” and “exists infinitely many” that can be decided based only on truth values of full dimensional cells.
Full dimensional cells example

Full dimensional cells example

• "An effective decision method for semidefinite polynomials", Guangxing & Xiaoning, JSC 2004. Their Ex. 4 asks whether the following polynomial is semi-definite:

$$w^6 + 2z^2 w^3 + x^4 + y^4 + z^4 + 2x^2 w + 2x^2 z + 3x^2 + w^2 + 2zw + z^2 + 2z + 2w + 1$$
Full dimensional cells example

• "An effective decision method for semidefinite polynomials", Guangxing & Xiaoning, JSC 2004. Their Ex. 4 asks whether the following polynomial is semi-definite:

\[w^6 + 2z^2 w^3 + x^4 + y^4 + z^4 + 2x^2 w + 2x^2 z + 3x^2 + w^2 + 2zw + z^2 + 2z + 2w + 1 \]

• \(p(x_1, \ldots, x_k) \) is not positive semi-definite if and only if \(p < 0 \) at some point \(\alpha \), in which case \(p < 0 \) for some neighborhood around \(\alpha \).

• Consider a CAD for \(p \). \(p \) is not positive semi-definite if and only if \(p < 0 \) in some full dimensional cell.

• QePcad B decides Ex. 4 is semi-definite in 0.3 seconds (on this laptop) when only full-dimensional cells are considered. (order \(w \prec z \prec x \prec y \))
Full dimensional cells: Part II

- **Approximate**: Perform Q.E. or formula simplification only for full dimensional cells in free variable space. Answer correct up to some measure zero subset of parameter space — i.e. the lower dimensional cells. For parameters with physical meaning this is good enough.

- **Generic Q.E. (Seidl & Sturm)**: Lift over all cells except sections of certain projection factors.
 - Choose projection factors whose possible vanishing requires us to increase projection size.
 - Don’t lift over sections of chosen factors so projection size kept smaller.
 - Output solution formula with formula stating that the chosen projection factors are assumed not to be zero (the *theory*).
 - Answer is exact given the theory.
Use CAD Properties in Novel Ways

• CADs tell you *lots* about the projection factors. Exploit this! Adapt CAD to new problems rather than try to phrase things as QE problems.

• Example: Characterize the monic quartic polynomials with all four roots real and distinct.
 – As Q.E. problem needs 4 free and 4 bound variables.
 – Use CAD of \(x^4 + ax^3 + bx^2 + cx + d \), with order \(a < b < c < d < x \)
 – Over each cell in \(\mathbb{R}^4 \) count roots & assign truth values.
 – This solution needs only 4 free and 1 bound variable.

• Anai & Parrilo, “*Convex Quantifier Elimination for Semi-Definite Programming*” is a nice example of specializing CAD to a particular problem.