Section 13.3: Arclength of curves

If you travel in a straight line at a constant speed v for t seconds, what distance s have you traveled?

$s = v t$
Section 13.3: Arclength of curves

If you travel in a straight line at a constant speed \(v \) for \(t \) seconds, what distance \(s \) have you traveled?

\[
s = v t
\]
Arclength

Let \(\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle \) be a parameterized path (aka curve). With your group, write down an expression for the speed at time \(t \). Call your function \(v(t) \), ... and notice it is NOT a vector!

Definition

The arclength of \(\mathbf{r}(t) \) from \(t = a \) to \(t = b \) is the distance traveled along the path \(\mathbf{r}(t) \) from time \(a \) to time \(b \).
Arclength

Let \(r(t) = \langle f(t), g(t), h(t) \rangle \) be a parameterized path (aka curve). With your group, write down an expression for the speed at time \(t \). Call your function \(v(t) \), ... and notice it is NOT a vector!

Definition
The \textbf{arclength} of \(r(t) \) from \(t = a \) to \(t = b \) is the distance traveled along the path \(r(t) \) from time \(a \) to time \(b \).
Arclength

Let \(\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle \) be a parameterized path (aka curve). With your group, write down an expression for the speed at time \(t \). Call your function \(v(t) \), ... and notice it is NOT a vector!

Definition

The **arclength** of \(\mathbf{r}(t) \) from \(t = a \) to \(t = b \) is the distance traveled along the path \(\mathbf{r}(t) \) from time \(a \) to time \(b \).

QUESTION: How do you compute arclength?
Aside

What is the area of the shape below (it’s fine with me if you assume it’s a parabola).
Aside

What is the area of the shape below (it’s fine with me if you assume it’s a parabola).

Discussion:

- Why is the area not simply given by AREA=BASE×HEIGHT?
Aside

What is the area of the shape below (it’s fine with me if you assume it’s a parabola).

Discussion:

- Why is the area not simply given by \(\text{AREA} = \text{BASE} \times \text{HEIGHT} \)?
- Think of other rules from mathematics or the sciences of the form \(C = A \times B \). When do you need an integral to compute \(C \)?
Arc-length formula

The arclength of $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ from $t = a$ to $t = b$ is:

$$s = \int_{a}^{b} \sqrt{f'(t)^2 + g'(t)^2 + h'(t)^2} \, dt.$$
Arc-length formula

The arclength of \(\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle \) from \(t = a \) to \(t = b \) is:

\[
s = \int_{a}^{b} |\mathbf{r}'(t)| \, dt = \int_{a}^{b} \mathbf{v}(t) \, dt.
\]
Arc-length formula

The arclength of \(\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle \) from \(t = a \) to \(t = b \) is:

\[
s = \int_{a}^{b} \sqrt{f'(t)^2 + g'(t)^2 + h'(t)^2} \, dt = \int_{a}^{b} \mathbf{v}(t) \, dt.
\]

In the rest of the course, it is useful to define the differential

\[
ds = \mathbf{v}(t) \, dt = \sqrt{f'(t)^2 + g'(t)^2 + h'(t)^2} \, dt.
\]

Which we think of as “a little bit of arclength”. Then we can write \(s = \int ds \).
Example

With your group, compute the arc-length from \(t = 0 \) to \(t = 3\pi \) for the helix parameterized by

\[
x = 3 \cos(2t), \quad y = 3 \sin(2t) \quad z = 8t
\]