14.1 Functions of several variables

Definition

- A function of two variables, defined on a domain D in the plane, is a rule f that assigns to each point (x, y) in D a unique real number, denoted $f(x, y)$.

- A function of three variables, defined on a domain D in space, is a rule f that assigns to each point (x, y, z) in D a unique real number, denoted $f(x, y, z)$.

14.1 Functions of several variables

Definition

- A function of two variables, defined on a domain D in the plane, is a rule f that assigns to each point (x, y) in D a unique real number, denoted $f(x, y)$.

- A function of three variables, defined on a domain D in space, is a rule f that assigns to each point (x, y, z) in D a unique real number, denoted $f(x, y, z)$.
Per the definition on the previous slide, which of the following defines a “function of three variables”?

(A) The parameterized curve \(\mathbf{r}(t) = \langle t, t^2, t^3 \rangle \) (the twisted cubic).

(B) The equation \(x^2 + y^2 - z^2 = 1 \) cutting out a hyperboloid of one sheet.

(C) To each point in this classroom, assign the temperature.

(D) More than one of these.
What is the largest possible domain of the function

\[f(x, y) = \sqrt{25 - x^2 - y^2} \]

(A) \(-5 \leq x \leq 5, \ -5 \leq y \leq 5. \)

(B) \(x^2 + y^2 \leq 25. \)

(C) The closed (i.e. includes its boundary) disk of radius 5 centered at the origin.

(D) More than one of these.
Which of the following best describes the points in the xy-plane for which $f(x, y) = \pm 1$ for the function

$$f(x, y) = \frac{y}{\sqrt{x - y^2}}.$$

(A) A circle of radius 1 centered at the origin.

(B) A quadric surface in \mathbb{R}^3 which is a cylinder.

(C) A parabola in the xy-plane opening in the x direction with vertex at the origin.

(D) None of these.
Definition

Given a function $f(x, y)$, the **contour curve** at **height** k is the intersection of the horizontal plane $z = k$ with the graph $z = f(x, y)$.
Definition

- Given a function \(f(x, y) \), the **contour curve** at height \(k \) is the intersection of the horizontal plane \(z = k \) with the graph \(z = f(x, y) \).
- The corresponding **level set** or **level curve** is the projection of the contour curve into the \(xy \)-plane. In other words, it is the curve defined by \(k = f(x, y) \) in the \(xy \)-plane.
Definition

- Given a function $f(x, y)$, the **contour curve** at **height** k is the intersection of the horizontal plane $z = k$ with the graph $z = f(x, y)$.
- The corresponding **level set** or **level curve** is the projection of the contour curve into the xy-plane. In other words, it is the curve defined by $k = f(x, y)$ in the xy-plane.
- A drawing depicting a collection of level curves for many values of k is called a **contour map**.
Examples in Mathematica.