Name: ______________________________ Class Time: 2 days

Purpose: To introduce the concept of double and triple integrals, computed as *iterated integrals*.

Procedure: Work on the following problems. Bring your ideas and solutions to class to discuss.

Let R denote the region in \mathbb{R}^2 described by $1 \leq x \leq 3$ and $-3 \leq y \leq 5$.

Problem 1. Sketch a picture of the region R.

Problem 2. The *double integral* of $f(x, y) = x^2y + 1$ over the region R is denoted by

$$\iint_R f(x, y) \, dA$$

where dA means "a little bit of area in 2-dimensions". However, the integral is *computed* by doing the *iterated integral*

$$\int_1^3 \left(\int_{-3}^5 f(x, y) \, dy \right) \, dx.$$

Compute the iterated integral.

Problem 3. What happens if you instead compute the iterated integral $\int_{-3}^5 \int_1^3 f(x, y) \, dx \, dy$?

Problem 4. Describe in words (as precisely as possible) what the value of the double integral above represents in geometry.

Problem 5. Now let $F : \mathbb{R}^3 \to \mathbb{R}$ be defined by $F(x, y, z) = xyz^2$. Compute the *triple integral*

$$\iiint_\Omega F(x, y, z) \, dV$$

over the region Ω defined by $0 \leq x \leq 1$, $1 \leq y \leq 2$, and $-1 \leq z \leq 4$.

Problem 6. What does dV mean in the integral above?

Problem 7. Describe in words (as precisely as possible) what the value of the triple integral above represents in geometry. Can you think of a "real life" example when this triple integral has meaning?