Day 2 Homework

Let \(T \) denote the region in \(\mathbb{R}^2 \) bounded by the lines \(y = 0 \), \(y = x \), and \(x = 2 \). Moreover, let \(g : \mathbb{R}^2 \to \mathbb{R} \) be the function defined by \(g(x, y) = y\sqrt{x^2 - y^2} \).

Problem 8. Sketch the region \(T \). Is \(T \) in the domain of \(g \)?

Problem 9. Describe in words (as precisely as possible) what the value of the double integral

\[
\iint_T g(x, y) \, dA
\]

represents in geometry.

Problem 10. Write down an iterated integral for \(\iint_T g(x, y) \, dA \) in which you integrate *first* with respect to \(y \) and *then* with respect to \(x \).

Problem 11. This time, write down an iterated integral for \(\iint_T g(x, y) \, dA \) in which you integrate first \(x \), then \(y \).

Problem 12. Which of Problems 10 or 11 is computationally easier? Why? Compute the value of the double integral \(\iint_T g(x, y) \, dA \).

Let \(E \) denote the region in \(\mathbb{R}^3 \) which lies above the triangle \(T \) in the \(xy \)-plane but below the graph of the surface \(z = \sqrt{y} \).

Problem 13. Suppose that the region \(E \) is made up of a material whose density is not constant. In fact, assume that the density of \(E \) is given by the function \(\delta(x, y, z) = z\sqrt{x^2 - y^2} \) in kg/cm\(^3\). Assume that the units on the \(x \), \(y \), and \(z \) axis are “centimeters” and compute the mass (in kg) of the region \(E \).

Problem 14. Let \(a \) and \(b \) be any real numbers on the \(x \)-axis (assume that \(a < b \)). Compute the value of the Calc I integral: \(\int_a^b 1 \, dx \). What does this integral tell you about the interval \([a, b]\)?

Problem 15. Let \(D \) denote a bounded region (i.e. \(D \) has finite area) in the \(xy \)-plane. What does the value of the double integral \(\iint_D 1 \, dA \) tell you about \(D \)?

Problem 16. Let \(E \) denote a bounded region (i.e. \(E \) has finite volume) in \((x, y, z)\)-space. What does the value of the triple integral \(\iiint_E 1 \, dV \) tell you about the region \(E \)?