1. Recall our definition of function from X into Y:

The statement that f is a function from X into Y means that

1. f is a subset of $X \times Y$;
2. if p is an element of X, then there is an element of f so that its
 first coordinate is p;
3. if (a, b) is an element of f and (a, c) is an element of f, then
 $b = c$.

Consider the following example sets

$X = \{a, 2, \text{Beyoncé}\}$ and $Y = \{a, 14, \text{Jay Z}\}$,

and circle any of the following sets f which are functions from X into Y. If one
of the below is not a function, say which of the parts (1), (2), or (3) it violates
in the definition above.

(a) $f = \{(a, 14), (2, 14), (\text{Beyoncé}, 14)\}$
(b) $f = \{(a, 14), (2, 14)\}$
(c) $f = \{(a, a), (2, \text{Jay Z}), (\text{Beyoncé}, 14)\}$
(d) $f = \{(a, 14), (a, 2), (2, 14), (\text{Beyoncé}, 14)\}$

2. “There exists a real number x with the property that x is not rational.”
 (a) Translate this quoted statement into a symbolic statement.
 (b) Negate the above quoted statement in English.
 (c) What is the truth value of the original quoted statement? What is the truth
 value of the negation; aka your answer to (b)?