Name: ___________________________ Class Time: 1 day

Purpose: To review some old, but important, concepts/computations.

Procedure: Do the problems below and bring your solutions to class.

Problem 1. Find parameterizations $\mathbf{r}(t)$ along with correct domains for the variable t for the following curves.

(a) The top half (where $y \geq 0$) of the circle $x^2 + y^2 = 9$ in \mathbb{R}^2, oriented counterclockwise.

(b) The right half (where $x \geq 0$) of the circle $x^2 + y^2 = 9$ in \mathbb{R}^2, oriented counterclockwise.

(c) The bottom half (where $y \leq 0$) of the circle $x^2 + y^2 = 9$ in \mathbb{R}^2, oriented clockwise.

(d) The right half (where $x \geq 0$) of the circle $x^2 + y^2 = 9$ in \mathbb{R}^2, oriented clockwise.

(e) The line segment from the point $(1, 4, 5)$ to the point $(3, -1, 0)$ in \mathbb{R}^3.

(f) The graph of $y = \ln(x)$ in \mathbb{R}^2, from the point $(1, 0)$ to the point $(e, 1)$.

(g) The graph of $y = \ln(x)$ in \mathbb{R}^2, from the point $(e, 1)$ to the point $(1, 0)$.

(h) The curve in \mathbb{R}^3 which is the intersection of the cylinder $x^2 + y^2 = 9$ and the plane $z = x + 2$.

Problem 2. Decide which of the vector fields \mathbf{F} below are conservative. If \mathbf{F} is conservative, also compute an associated potential function f (so that $\nabla f = \mathbf{F}$).

(a) $\mathbf{F} = \langle 3xy, y^2 + x \rangle$ on \mathbb{R}^2

(b) $\mathbf{F} = \langle -2xe^{-x^2-y^2} (2x^2 + 3y^2 - 2), -2ye^{-x^2-y^2} (2x^2 + 3y^2 - 3) \rangle$ on \mathbb{R}^2

(c) $\mathbf{F} = \langle 12x^2 + 3yz, 3xz + 2yz, 3xy + y^2 \rangle$ on \mathbb{R}^3

(d) $\mathbf{F} = \langle 12x^2 + 3yz, 3xz + 2yz + 5, 3xy + y^2 \rangle$ on \mathbb{R}^3

(e) $\mathbf{F} = \langle 12x^2 + 3yz, 3xz + 2yz + 5x, 3xy + y^2 \rangle$ on \mathbb{R}^3