More notes on sets and functions

Proposition 1. If X and Y are sets, then $X \times Y = Y \times X$.

Proposition 2. If X, Y and Z are sets, then $X \cap (Y \cup Z) = (X \cup Y) \cap (X \cup Z)$.

Proposition 3. If X, Y and Z are sets, then $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$.

Proposition 4 (cf. Test 1, Problem 4.c.). Suppose that X and Y are nonempty sets. Then there is a function from X into Y.

Definition 1. Suppose that X and Y are sets, and that f is a function from X into Y. X is called the **domain** of f, and Y is called the **codomain** of f. The **range** of f is the set $\{ p : \text{there is an element of } f \text{ whose second coordinate is } p \}$.

Definition 2. Suppose that X is a set and Y is a set. The statement that X **commands** Y means that there exists a function f from X into Y so that the range of f is Y. Furthermore, we say that such an f is **onto**.

Notice that the definition above says that “X commands Y” means that “there exists an onto function from X into Y”.

Proposition 5. If X is a set, then X commands X.

Proposition 6. Suppose that X and Y are sets and Y is a subset of X. Then X commands Y.

Proposition 7. Suppose that X and Y are sets, and Y is a subset of X, and X is not Y. Then it is not the case that Y commands X.

Proposition 8. If X is a set with no elements, and Y is a set with no elements, then $X = Y$.

Proposition 9. If X, Y, and Z are sets, and Y is a subset of Z, then $X \times Y$ is a subset of $X \times Z$.

Proposition 10. If X, Y and Z are sets, then $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$.

Proposition 11. The set $\{ t : t \text{ is a real number and } 1 \leq t < 3 \}$ commands the set $\{ u : u \text{ is a real number and } 5 \leq u < 9 \}$.

Definition 3. Suppose that X and Y are sets. The **difference of X and Y** is $\{ p : p \text{ is an element of } X \text{ and } p \text{ is not an element of } Y \}$.

Notation. $X \setminus Y$ stands for the difference of X and Y.

Proposition 12. If X and Y are sets, then $X \setminus (X \setminus Y) = Y$.

Proposition 13. If X, Y, and Z are sets, then $X \setminus (Y \cup Z) = (X \setminus Y) \cup (X \setminus Z)$.

Definition 4. Suppose that X and Y are sets, and that f is a function from X into Y. The statement that f is **one-to-one** means that if (a, c) is an element of f and (b, c) is an element of f, then $a = b$.

Proposition 14. There is a one-to-one function from $\{ 1, 2 \}$ into $\{ 1, 2, 3 \}$.
Proposition 15. There is a function from \(\{1, 2\} \) into \(\{1, 2, 3\} \) which is not one-to-one.

Proposition 16. The set \(\{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x^2 \} \) is a one-to-one function from \(\mathbb{R} \) into \(\mathbb{R} \).

Proposition 17. The set \(\{(x, y) \in \mathbb{R} \times \mathbb{R} : y = 3x + 1 \} \) is a one-to-one function from \(\mathbb{R} \) into \(\mathbb{R} \).

Proposition 18. If \(X \) and \(Y \) are sets, and \(X \) is a subset of \(Y \), then there is a one-to-one function from \(X \) into \(Y \).