Knowledge Demonstration Opportunity 3: SM221, Calculus III

Name: ________________

29 October 2018

Read all of the following information before starting:

- You are allowed pencils, pens, your TI-36X calculator, and your wits. That is all. In particular, no computers, notes, books, smartphones, iPads, or pocket-sized hobbits.

- To receive full credit, justify your work clearly and in order. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your "final" answer is correct).

- Use sentences to explain your reasoning. Please keep written answers brief; and simultaneously clear!

- Box or otherwise indicate your final numeric answers.

- Good luck!

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1 (10 points). Consider the function \(f(x,y,z) = 12xyz \). Compute the value of the triple integral \(\iiint_E f(x,y,z) \, dV \) where \(E \) is the region below the plane \(z = y \), and above the rectangle in the \(xy \)-plane defined by \(0 \leq x \leq 2 \) and \(0 \leq y \leq 3 \).

\[
\int_0^2 \int_0^3 \int_0^y f \, dz \, dy \, dx = \int_0^3 \int_0^2 \int_0^y f \, dz \, dx \, dy
\]

\[
\int_0^3 \int_0^2 \int_0^z f \, dx \, dz \, dy = \int_0^3 \int_0^2 \int_0^z f \, dx \, dy \, dz
\]

\[
\int_0^3 \int_0^2 \int_0^3 f \, dy \, dx \, dz = \int_0^3 \int_0^2 \int_0^z f \, dy \, dz \, dx
\]

First line is easiest (probably).

\[
\int_0^2 \int_0^3 \int_0^y 12xyz \, dz \, dy \, dx = \int_0^2 \int_0^3 6xy^3 \, dy \, dx
\]

\[
= \left[\int_0^2 6x \, dx \right] \left[\int_0^3 y^3 \, dy \right] = \left[3 \cdot 2^2 \right] \left[\frac{1}{4} \cdot 3^4 \right]
\]

\[
= 3^5 = 243
\]
Problem 2 (10 points). Answer the following multiple choice questions.

(a) Let \(D \) denote the disk in the \(xy \)-plane bounded by the circle \(x^2 + y^2 = 9 \). If \(D \) is a lamina with density \(\delta(x, y) = x^2 \), which of the following integrals computes the mass of \(D \)?

\[
I_1 = 2 \int_{-3}^{3} \int_{0}^{\sqrt{9-y^2}} x^2 \, dx \, dy,
I_2 = 4 \int_{0}^{3} \int_{0}^{\sqrt{9-y^2}} x^2 \, dx \, dy,
I_3 = \int_{0}^{3} \int_{0}^{\frac{\pi}{2}} r^3 \cos^2(\theta) \, d\theta \, dr.
\]

(i) \(I_1 \) only;
(ii) \(I_2 \) only;
(iii) \(I_3 \) only;
(iv) all of \(I_1, I_2, \) and \(I_3 \);
(v) none of these.

(b) Consider the set \(C \) in 3D defined by the following equations in spherical coordinates:

Which of the following best describes \(C \):

(i) A circle of radius 5;
(ii) A longitude on a sphere of radius 5;
(iii) A latitude on a sphere of radius 5;
(iv) A circle of radius \(\sqrt{5} \).

\[
p = 5 \quad \text{and} \quad \phi = \frac{\pi}{6}
\]

(c) Circle all of the following integrals which evaluate to the number 1.

\[
\begin{align*}
& (i) \int_{0}^{1} \int_{0}^{2\pi} r^2 \, dr \, d\theta \\
& (ii) \int_{0}^{1} \int_{0}^{\pi/2} r^2 \cos^2 \theta \, dr \, d\theta \\
& (iii) \int_{0}^{1} \int_{0}^{\pi/2} \sin \theta \, dr \, d\theta \\
& (iv) \int_{0}^{1} \int_{0}^{\pi/2} \sin \theta \, dr \, d\theta
\end{align*}
\]

Could compute all of these...

or use geometry!

\[
\text{Could compute all of these...}
\]

\[
\text{or use geometry!}
\]

\[
\text{227 latitude}
\]

(longitudes all have same radius.)
Problem 3 (10 points). Compute the value of the iterated integral

\[\int_0^2 \int_x^{\sqrt{4-x^2}} x \, dy \, dx \]

Region:

\[y = x \]

\[y = \sqrt{4-x^2} \]

Notice: \(y = x \) & \(y = \sqrt{4-x^2} \) intersect when:

\[x = \sqrt{4-x^2} \quad \Rightarrow \quad x^2 = 4 - x^2 \]

\[2x^2 = 4 \]

\[x^2 = 2 \quad \Rightarrow \quad x = \sqrt{2} \]

In polar coordinates, region becomes:

\[0 \leq r \leq 2, \quad \frac{\pi}{4} \leq \theta \leq \frac{\pi}{2} \]

Hence, the integral becomes:

\[\int_0^2 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{r^2 \cos^2 \theta}{2} \, r \, d\theta \, dr \]

\[= \frac{\pi}{3} \left(1 - \frac{\sqrt{2}}{2} \right) \]

\[= \left[\int_0^2 r^2 \, dr \right] \left[\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos \theta \, d\theta \right] = \left(\frac{1}{3} \cdot 8 \right) \left(1 - \sin \left(\frac{\pi}{2} \right) - \sin \left(\frac{\pi}{4} \right) \right) \]
We could do Part 3 directly...

\[\int_0^{\sqrt{2}} \int_0^{\sqrt{4-x^2}} x \, dy \, dx \]

\[= \int_0^{\sqrt{2}} xy \bigg|_{y=x} \, dx \]

\[= \int_0^{\sqrt{2}} (x\sqrt{4-x^2} - x^2) \, dx \]

Now we need two terms:

\[= \int_0^{\sqrt{2}} x\sqrt{4-x^2} \, dx - \int_0^{\sqrt{2}} x^2 \, dx \]

\[\begin{align*}
 u &= 4-x^2 \\
 du &= -2x \, dx
\end{align*} \]

\[= \int_0^{\sqrt{2}} -\frac{1}{2} u^{3/2} \, du + \frac{1}{2} \int_0^{\sqrt{2}} u^{1/2} \, du \]

\[= \frac{1}{3} u^{3/2} \bigg|_{u=4}^{u=2} = \frac{8}{3} - \frac{2}{3} \sqrt{2} \]

Whole thing = \(\frac{8}{3} - \frac{2}{3} \sqrt{2} - \frac{2}{3} \sqrt{2} = \frac{8}{3} (1 - \sqrt{2}) \).
Problem 4 (10 points). Consider the ice-cream-cone-shaped region in 3D bounded below by \(z = \sqrt{x^2 + y^2} \) and bounded above by \(z = \sqrt{2 - x^2 - y^2} \). Let \(I \) denote the half of this ice-cream-cone with \(y \geq 0 \). Compute the volume of \(I \).

\[
\text{Vol} = \iiint_I dV
\]

\[
= \int_0^{\pi/4} \int_0^{\sqrt{2}} \int_0^\pi \rho^2 \sin \phi \ d\rho \ d\phi \ d\theta
\]

\[\text{of course, you could also do volume of whole ice-cream cone (i.e. } \omega \text{)} \& \text{ then just take } \sqrt{2} \text{ by symmetry ...}
\]

\[
\text{Vol} (I) = \left[\int_0^\pi d\theta \right] \left[\int_0^{\pi/4} \sin \phi \ d\phi \right] \left[\int_0^{\sqrt{2}} \rho^2 \ d\rho \right]
\]

\[
= \left[\pi \right] \left[-\cos \phi \right]_0^{\pi/4} \left[\frac{1}{3} \rho^3 \right]_0^{\sqrt{2}}
\]

\[
= \pi \left[1 - \frac{\sqrt{2}}{2} \right] \left[\frac{2}{3} \sqrt{2} \right]
\]

\[\text{OK...}
\]
Problem 4 (10 points). Consider the ice-cream-cone-shaped region in 3D bounded below by \(z = \sqrt{x^2 + y^2} \) and bounded above by \(z = \sqrt{2 - x^2 - y^2} \). Let \(I \) denote the half of this ice-cream-cone with \(y \geq 0 \). Compute the volume of \(I \).

Can use cylindrical coordinates:

\[
\begin{align*}
2 &= \sqrt{2 - x^2 - y^2} \\
\Rightarrow z &= \sqrt{2 - r^2} \\
\end{align*}
\]

\[
\begin{align*}
z &= \sqrt{x^2 + y^2} \\
\Rightarrow z &= r.
\end{align*}
\]

\[
\iiint_I 1 \, dV = \iiint_P \left[\int_0^{\sqrt{2-r^2}} 1 \, dz \right] \, dA
\]

where \(P \) is in \(xy \)-plane:

\[
x^2 + y^2 = 1
\]

\[
\begin{align*}
\mathbf{r} &= \sqrt{2 - r^2} \\
\Rightarrow r &= \sqrt{2 - r^2} \\
\Rightarrow r &= 1
\end{align*}
\]

\[
\begin{align*}
\frac{\pi}{2} & \int_0^1 \left(\sqrt{2 - r^2} - r^2 \right) \, dr \, d\theta \\
\end{align*}
\]

\[
\begin{align*}
\text{need} \\
u &= 2 - r^2 \\
du &= -2r \\
\end{align*}
\]