Skip to main content Skip to footer site map
Research
Group Photo
Group Photo
Chun USNA in hammock

Carolyn Chun's Research

Click here to download Carolyn Chun's CV (last updated May 2017).

Here are some recent/upcoming talks that she has given/will give.

  1. July, 2017.  Waterloo, Canada.  SiGMa (Structure in Graphs and Matroids) 2017:  Delta-matroids as subsystems of sequences of Higgs lifts.
  2. July, 2016.  Eindhoven, The Netherlands.  2016 International Workshop on Structure in Graphs and Matroids:  Delta-matroids, an overview.
  3. June, 2016.  Schloss Dagstuhl, Wadern, Germany.  Graph Polynomials:  Towards a Comparative Theory:  An introduction to the theory of matroids and delta-matroids by Carolyn Chun and James Oxley.
  4. March, 2016.  Annapolis, Maryland, USA.  USNA Matroid Seminar: Inductive tools for graphs (and matroids) Part II.
  5. March, 2016.  Annapolis, Maryland, USA.  USNA Matroid Seminar: Inductive tools for graphs (and matroids) Part I.
  6. February, 2016.  Washington, DC, USA.  George Washington University Colloquium:  Inductive tools for graphs (and matroids).
  7. December, 2015.  Victoria University of Wellington, New Zealand.  A Conference in Honour of Geoff Whittle:  Delta-matroids are great and you can, too!
  8. October, 2015.  London, United Kingdom.  Royal Holloway University of London Mathematics Seminar:  A splitter theorem for internally 4-connected graphs and binary matroids.

Here is a list of her publications to date, as of May 2017.

Published

  1. Chun, G. Ding, B. Oporowski, and D. Vertigan. Unavoidable parallel minors of 4-connected graphs.  Journal of Graph Theory.  60(4) (2009), 313-326.
  2. J. Aikin, Chun, R. Hall, D. Mayhew. Internally 4-connected binary matroids with cyclically sequential orderings. Discrete Mathematics.  310(1) (2010), 92-108.
  3. Chun, G. Ding. Unavoidable topological minors of infinite graphs. Discrete Mathematics. 310(24) (2010), 3512-3522.
  4. Chun, J. Oxley.  Unavoidable parallel minors of regular matroids.  European J.  Combin.  32(6) (2011), 762-774.
  5. Chun, D. Mayhew, J. OxleyJ. A chain theorem for internally 4-connected binary matroids.  J. Combin. Theory Ser. B.  101 (2011), 141-189.
  6. Chun, D. Mayhew, J. Oxley. Constructing internally 4-connected binary matroids. Adv. in Appl. Math. 50 (2013), 16-45.
  7. Chun, D. Mayhew, J. Oxley. Towards a splitter theorem for internally 4-connected binary matroids. J. Combin. Theory Ser. B. 102 (2012), 688-700.
  8. Chun, D. Mayhew, J. Oxley.  Towards a splitter theorem for internally 4-connected binary matroids II.  Europ. J. Combin.  36 (2014), 550-563.
  9. Chun, D. Mayhew, J. Oxley.  Towards a splitter theorem for internally 4-connected binary matroids III.  Adv. in Appl. Math.  51 (2013) 309-344.
  10. Chun, D. Mayhew, J. Oxley.  Towards a splitter theorem for internally 4-connected binary matroids IV.  Adv. in Appl. Math. 52 (2014), 1-59.
  11. Chun, D. Mayhew, J. Oxley.  Towards a splitter theorem for internally 4-connected binary matroids V.  Adv. in Appl. Math. 52 (2014), 60-81.
  12. Chun, D. Chun, D. Mayhew, S. van Zwam.  Fan-extensions in fragile matroids.  Electron. J. Combin. 22 (2015), no. 2, Paper #P2.30.
  13. Chun, D. Mayhew, M. Newman. Obstacles to decomposition theorems for sixth-roots-of-unity matroids.  Ann. Comb. 19 (2015), 79-93.
  14. Chun, G. Ding, D. Mayhew, J. Oxley.  Unavoidable connected matroids retaining a specified minor, SIAM J. Discrete Math., 30-3 (2016), 1590-1606.
  15. Chun.  Delta-matroids:  Origins, The Matroid Union (a blog for and by the matroid community), guest post, 8 pages.
  16. Chun, D. Mayhew, J. Oxley. Towards a splitter theorem for internally 4-connected binary matroids IX: the theorem. J. Combin. Theory Ser. B., 121 (2016), 2-67.
  17. Chun, M. Criel, R. Hall, S. Noble. On zeros of the characteristic polynomial of matroids of bounded tree-width. Europ. J. Combin., 60 (2017), 10-20.
  18. Chun, D. Chun, S. Noble.  An inductive tool for delta-matroids and multi-matroids.  Europ. J. Combin., 63 (2017), 59-69.
  19. Chun, D. Mayhew, J. Oxley.  Towards a splitter theorem for internally 4-connected binary matroids VIII:  small matroids.  Adv. in Appl. Math. 85 (2017), 12-30.

Submitted

  1. Chun, I. Moffatt, S. Noble, R. Rueckriemen. Matroids, delta-matroids, and embedded graphs.  Submitted.  Typescript 44 pages.
  2. Chun, I. Moffatt, S. Noble, R. Rueckriemen. On the interplay between embedded graphs and delta-matroids.  Submitted.  Typescript 25 pages.
  3. Chun, J. Oxley.  Towards a splitter theorem for internally 4-connected binary matroids VI. Typescript 61 pages.
  4. Chun, J. Oxley.  Towards a splitter theorem for internally 4-connected binary matroids VII. Typescript about 48 pages.
  5. Chun, J. Oxley.  Internally 4-connected binary matroids with every element in three triangles. Typescript 13 pages.

For a list of her other talks, or her awards, or her service activities, see her CV.

go to Top