Basic feasible solutions: A basic solution which is nonnegative.

Basic solution: For a canonical form linear program (see below), a basic solution is a vector \(x \) where, for a given basis, \(B \), if \(j \notin B \) then \(x_j = 0 \). The variables \(x_j \) for \(j \in B \) solve the square linear system \(Bx(B) = b \). Thus, because \(B \) is invertible, \(x(B) = B^{-1}b \).

Basic variable: For a basic solution, \(x \), with basis \(B \), any variable \(x_j \) where \(j \in B \).

Basis: For a canonical form linear program (see below), a basis is a set, \(B \), of indices corresponding to \(m \) linearly independent columns. For an \(n \) dimensional vector \(x \), we write \(x(B) \) to denote a vector with components \(x_j \) for \(j \in B \). For the matrix \(A \), we write \(A(B) \) to denote the submatrix from taking the \(m \) columns of \(A \) corresponding to \(B \).

Bland’s rule: An anti-cycling pivot rule where the entering variable is the nonbasic variable with a positive reduced cost and the smallest index. If the min. ratio test results in a tie, then the leaving variable is the basic variable chosen is the one with the smallest index.

Blending constraint: For a product made from a “blend” of different items, a constraint such that the percentage of one or more of the items (or even a characteristic of an item) is constrained. To linearize such a constraint, the denominator is typically multiplied through (which assumes that at least a positive amount of the product is made). For example, suppose that a gasoline is made by blending two types of crude oil, type \(A \) and type \(B \). Let \(x_A \) denote the amount of oil \(A \) used and \(x_B \) the amount of oil \(B \) used. If \(A \) has an octane rating of 93 and \(B \) an octane rating of 88, then to keep the average octane rating of the gas at least 91, the nonlinear constraint

\[
\frac{93x_A + 88x_B}{x_A + x_B} \geq 91
\]

could be used. To make this constraint linear and therefore valid for a linear program, use:

\[
93x_A + 88x_B \geq 91(x_A + x_B).
\]

Canonical form linear program: A linear program in the form

\[
\begin{align*}
\text{max or min} & \quad c^\top x \\
\text{s.t.} & \quad Ax = b \\
& \quad x \geq 0,
\end{align*}
\]

where \(A \) is an \(m \times n \) real matrix with full-row rank, \(c \) is an \(n \) dimensional real vector, and \(b \) is an \(m \) dimensional vector. The decision variables are the \(n \)-dimensional vector \(x \). Note that the objective can be minimization or maximization.

Combinatorial Optimization Problem: A mathematical program where the variables are restricted to zero or one.

Continuous Variable: A decision variable that can take non-integer values.

Dantzig’s rule: A pivot rule where the entering (nonbasic) variable is the one with the largest reduced cost (for a maximization problem).

Decision Variable: A variable in a mathematical program that can be changed.

Decision Vector: A vector of some or all (usually all) of the decision variables in a mathematical program.

Degenerate basic feasible solution: A basic feasible solution where one or more of the basic variables is zero.

Discrete Variable: A decision variable that can only take integer values.

Feasible Solution: A decision variable that satisfies all the constraints.

Feasible Region: The set of all feasible solutions, i.e., \(S \).
Graph: A set, \mathcal{V}, of nodes (or vertices) and a set of pairs of nodes, called edges (or arcs), \mathcal{E}, typically written $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and can be drawn as (arbitrarily placed) small circles in space for each $i \in \mathcal{V}$ with a line between nodes i and j if $(i, j) \in \mathcal{E}$. We typically use directed graphs, which means the order of the edge matters, i.e., $(i, j) \neq (j, i)$ for $i \neq j$. Note that we also assume that graphs do not have loops, i.e., edges from a node to itself, or multiedges, multiple copies of an edge.

Infeasible Problem: A mathematical program where $S = \emptyset$, i.e., where no feasible solution exists.

Infeasible Solution: A solution, \mathbf{x}, that does not satisfy the constraints, i.e., $\mathbf{x} \notin S$.

Linear Program (LP): A mathematical program where f is linear and S is determined by linear inequalities and equalities. This can be written as

$$\begin{align*}
\text{max} & \quad c_1 x_1 + \ldots + c_n x_n \\
\text{s.t.} & \quad a_{i1} x_1 + \ldots + a_{in} x_n \leq b_i, i = 1, \ldots, m.
\end{align*}$$

We can show that every LP can be written in this form. Linear programs assume additivity, certainty, divisibility, and proportionality.

Mathematical Program: Also called an optimization problem, a mathematical program consists of a given set $S \subset \mathbb{R}^n$ and function $f : S \to \mathbb{R}$. Then, the mathematical program is

$$\max \{ f(\mathbf{x}) : \mathbf{x} \in S \} \text{ or } \min \{ f(\mathbf{x}) : \mathbf{x} \in S \}.$$

Minimum ratio test: For a canonical form linear program, basic solution, \mathbf{x}, with basis, \mathcal{B}, and simplex direction $\mathbf{d}^{(j)}$, the minimum ratio test is the calculation used to determine the maximum step size, λ, that can be used before $\mathbf{x} + \lambda \mathbf{d}^{(j)}$ is not feasible. Because $\mathbf{x} + \lambda \mathbf{d}^{(j)}$ satisfies equality constraints for any λ, the step size is determined in order to satisfy the nonnegativity constraints, i.e., λ is the maximum value such that, for all i,

$$x_i + \lambda d_i^{(j)} \geq 0.$$

For nonbasic indices i, $x_j + \lambda d_j^{(j)} \geq 0$ so the minimum ratio test is calculated via

$$\lambda = \min \{ \frac{x_i}{-d_i^{(j)}} : i \in \mathcal{B}, d_i < 0 \}.$$

Nonbasic variable: For a basic solution, \mathbf{x}, with basis \mathcal{B}, any variable x_j where $j \notin \mathcal{B}$. All nonbasic variables are zero, i.e., $x_j = 0$ for $j \notin \mathcal{B}$.

Pivot rule: How an entering is picked in Simplex. Pivot rules are only used if there is an improving direction (i.e., at least one positive reduced cost for a max problem or at least one negative reduced cost for a min problem). Some pivot rules also specify how leaving variables are chosen in the event of a tie in the minimum ratio test.

Optimal Solution: A feasible solution, \mathbf{x}^*, that has, for all $\mathbf{x} \in S$:

$$f(\mathbf{x}^*) \geq f(\mathbf{x}) \text{ for a maximization problem, or;}$$

$$f(\mathbf{x}^*) \leq f(\mathbf{x}) \text{ for a minimization problem.}$$

Reduced cost: For a canonical form linear program and a basic feasible solution with basis, \mathcal{B}, and basis matrix $B = A(\mathcal{B})$, the reduced cost of the nonbasic variable with index $j \notin \mathcal{B}$ is the directional derivative of the objective function, $\mathbf{c}^T \mathbf{x}$, in the simplex direction $\mathbf{d}^{(j)}$, i.e.,

$$\tau_j = D_{\mathbf{d}^{(j)}}(\mathbf{c}^T \mathbf{x}) = \nabla(\mathbf{c}^T \mathbf{x}) \cdot \mathbf{d}^{(j)} = \mathbf{c} \cdot \mathbf{d}^{(j)} = c_j - \mathbf{c}^T B^{-1} A_j.$$

Reduced cost optimality conditions: For a canonical form linear program, a basic feasible solution with basis, \mathcal{B}, is optimal for a maximization problem if, for all $j \notin \mathcal{B}$,

$$\tau_j \leq 0.$$

For a minimization problem, the condition is that for all $j \notin \mathcal{B}$,

$$\tau_j \geq 0.$$
Simplex direction: For a canonical form linear program and a basic feasible solution, \(x \), with basis, \(B \), and basis matrix \(B = A(B) \), the simplex direction of the nonbasic variable with index \(j \not\in B \) is an \(n \)-dimensional vector \(d^{(j)} \) where \(d^{(j)}_j = 1 \), for \(i \not\in B, i \neq j \), \(d^{(j)}_i = 0 \) and

\[
d^{(j)}(B) = -B^{-1}A_j.
\]

Note that \(A_j \) is the \(j \)th column of \(A \). Also recall that the derivation of \(d^{(j)} \) was based on (1) changing only one non-basic variables, and (2) satisfying all the equality constraints for any change from the basic feasible solution, \(x \), i.e., for any \(\lambda \) and \(j \not\in B \).

\[
A(x + \lambda d^{(j)}) = b.
\]

Solution: A particular setting of the decision vector. Note that the solution may not satisfy all the constraints.

Unbounded Mathematical Program: A mathematical program where for any \(K > 0 \), for a maximization, there exists a feasible solution \(x \) with \(f(x) > K \). For a minimization problem, for any \(K < 0 \) there is a feasible solution \(x \) with \(f(x) < K \).