Syllabus

Course description The primary focus of this course is to learn about models and algorithms used for Convex Optimization, also called convex programming. Our primary focus will be on modeling techniques and some related applications. A secondary focus will be learning necessary topics in convex analysis and applicable algorithms.

Software Matlab, CVX

The following are specific course assessment topics:

1. Convex and affine sets
 (a) Hyperplanes, halfspaces, polyhedra
 (b) Euclidean and other norm balls, elipsoids
 (c) Positive semidefinite cone
 (d) Second-order cone

2. Convexity preserving operations
 (a) Intersection
 (b) affine functions
 (c) perspective functions
 (d) linear-fractional function

3. Generalized inequalities
 (a) Proper cones
 (b) Minimum versus minimal
 (c) Supporting hyperplane theorem
 (d) Dual cones

4. Convex functions
 (a) Definition
 (b) Operations that preserve function convexity
 (c) Conjugate function
 (d) Quasiconvex
(e) log-concave/convex
(f) convex functions with generalized inequalities

5. Convex Optimization
(a) opt. problems in standard form
(b) convex opt. problems
(c) quasiconvex opt.
(d) linear opt.
(e) quadratic opt.
(f) geometric opt.
(g) generalized inequality constraints
(h) semidefinite programming
(i) vector optimization

6. Duality
(a) Lagrangian duality
(b) weak versus strong
(c) optimality conditions
(d) geometric interpretation
(e) perturbation and sensitivity analysis
(f) generalized inequalities

7. Applications
(a) Approximation and fitting
 i. norm approximation
 ii. least-norm problems
 iii. regularized approximation
 iv. robust approximation
(b) Miscellaneous
 i. multi-period processor speed scheduling
 ii. minimum time optimal control
 iii. grasp force optimization
 iv. optimal broadcast transmitter power allocation
 v. phased-array antenna beamforming
 vi. optimal receiver location
(c) Stochastic programming
 i. stochastic programming
 ii. certainty equivalent problem
 iii. penalization methods
 iv. Monte-carlo sampling methods
v. validation
(d) Chance constrained optimization
 i. chance constraints and percentile optimization
 ii. chance constraints for log-concave distributions
 iii. convex approximation of chance constraints
(e) Filter design and equalization
 i. FIR filters
 ii. Chebychev design
 iii. linear phase filter design
 iv. equalizer design
 v. filter magnitude specifications
(f) CVX, matlab
 i. using different solvers with CVX
 ii. Linear programs
 iii. Quadratic programs
 iv. Semidefinite programs
(g) ℓ_1 methods, convex-cardinality problems
 i. Cardinality and the ℓ_1 relaxation
 ii. Convex interpretations
 iii. Total variation
 iv. iterated weighted heuristic
 v. matrix rank constraints
(h) Statistical estimation
(i) Geometric problems
 i. extremal volume ellipsoids
 ii. centering
 iii. classification
 iv. facility location

8. Numerical linear algebra background and review
 (a) matrix structure and algorithm complexity
 (b) solving linear equations with factored matrices
 (c) LU, Cholesky, LDL factorization
 (d) matrix inversion lemma

9. Unconstrained minimization
 (a) gradient descent
 (b) steepest descent
 (c) Newton’s method
 (d) self-concordant functions