
The Cunningham-Geelen Method in Practice:
Branch-decompositions and Integer Programming

S. Margulies
Department of Computational and Applied Math, Rice University, Houston, Texas,

{susan.margulies@rice.edu}
J. Ma

Department of Management Science and Engineering, Stanford University, Palo Alto, California,
{jm11.rice@gmail.com}

I.V. Hicks
Department of Computational and Applied Math, Rice University, Houston, Texas,

{ivhicks@rice.edu}

Cunningham and Geelen [7] describe an algorithm for solving the integer program max{cT x :

Ax = b, x ≥ 0, x ∈ Zn}, where A ∈ Zm×n
≥0 , b ∈ Zm, and c ∈ Zn, which utilizes a branch-

decomposition of the matrix A and techniques from dynamic programming. In this paper,

we report on the first implementation of the CG algorithm, and compare our results with the

commercial integer programming software Gurobi [3]. Using branch-decomposition trees

produced by the heuristics developed by Ma et. al [12], and optimal trees produced by the

algorithm designed by Hicks [10], we test both a memory-intensive and low-memory version

of the CG algorithm on problem instances such as graph 3-coloring, set partition, market

split and knapsack. We isolate a class of set partition instances where the CG algorithm

runs twice as fast as Gurobi, and demonstrate that certain infeasible market split and

knapsacks instances with width ≤ 6 range from running twice as fast as Gurobi, to running

in a matter of minutes versus a matter of hours.

Key words: optimization; integer programming; branch-decompositions

History: submitted April 2011.

1. Introduction

The burgeoning area of branch-decomposition-based algorithms has expanded to include

problems as diverse as ring-routing [4], travelling salesman [5] and general minor containment

[9]. In addition to being an algorithmic tool, branch-decompositions have been instrumental

in proving such theoretical questions as the famous Graph Minors Theorem (proved in a

series of 20 papers spanning 1983 to 2004), and also in identifying classes of problems that are

1

solvable in polynomial time. For example, in [6, 2], the authors showed that several NP-hard

problems (such as Hamiltonian cycle and covering by triangles) are solvable in polynomial

time in the special case where the input graph has bounded tree-width or branch-width.

During its 50-year history, the approaches to solving integer programs have been as vari-

ous and dissimilar as the industry applications modeled by the integer programs themselves.

Branch-and-bound techniques, interior point methods and cutting plane algorithms are only

a few of the strategies developed to answer the question max{cT x : Ax = b, x ≥ 0, x ∈ Zn}.
However, a particularly interesting aspect of the Cunningham-Geelen (CG) algorithm [7]

is that it provides a first link between integer programming and the long list of research

areas augmented by branch-decompositions. The questions is, how significant will this link

between branch-decompositions and integer programming be? How well does the CG algo-

rithm work in practice? Are there classes of problems upon which is it efficient? Is it easy to

implement? How does it compare to commercial software? These are the questions explored

in this paper.

We begin in Section 2 by recalling the relevant background and definitions (such as

branch-decomposition, branch-width, T -branched sets, etc.). In Section 3, we describe the

CG algorithm in detail, including a discussion of internal data-structures and runtime, and

highlight the relevance of a particular vector space intersection to the workings of the al-

gorithm. In Section 4, we describe three different methods for calculating this particular

intersection, and include experimental results for a comparison of the three methods. In

Section 5, we display the computational results for the CG algorithm: we test on graph

3-coloring, set partition, market split and knapsack instances, and also include a cross-

comparison with the commercial integer programming software Gurobi [3]. We conclude in

Section 5.4 with a brief discussion on the impact of different branch-decomposition trees on

the runtime of the CG algorithm, and comment on future work in the conclusion.

2. Background and Definitions

Given an m×n matrix A, let E = {1, . . . , n} and X ⊆ E. A branch-decomposition of A is a

pair (T, ν), where T is a cubic tree (all interior nodes have degree three), and ν is a map from

the columns of A to the leaves of T . The edges of T are weighted via a connectivity function

λA. Specifically, for any edge e ∈ E(T), T − e disconnects the tree into two connected

components. Since the leaves of the tree correspond to column indices, disconnecting the

2

tree T is equivalent to partitioning the matrix into two sets of columns, X and E − X.

Then, letting A|X denote the submatrix of A containing only the columns of X, we define

the connectivity function

λA(X) = rank(A|X) + rank(A|(E −X))− rank(A) + 1 .

We note that the connectivity function is symmetric (since λA(X) = λA(E − X)), and

submodular (since λA(X1) + λA(X2) ≥ λ(X1 ∩ X2) + λ(X1 ∪ X2) for all X1, X2 ⊆ E).

Finally, we define the width of a branch-decomposition (T, ν) as the maximum over all the

edge weights in T , and we define the branch-width of A as the minimum-width branch-

decomposition over all possible branch-decompositions of A. In other words, let BD(A)

denote the set of all possible branch-decompositions (T, ν) of A, and thus, the

branch-width of A = min
(T,ν)∈BD(A)

{
max

e∈E(T)

{
weight(e)

}}
.

Example 2.1 For example, consider the following matrix A and branch-decomposition (T, ν):

1 2 3 4

A =




2 3 1 0
3 1 2 3
4 2 1 1
1 0 1 0




1

2 3

4

T

1

1

1 1

1

v
1

v
2

In this example, we note that the weight of edge (v1, v2) is equal to one. This is because

T − (v1, v2) disconnects T into two components, the first labeled with the columns X = {1, 2}
and the second labelled with the columns E −X = {3, 4}. Thus,

weight(v1, v2) = λA({1, 2}) = rank(A|{1, 2}) + rank(A|{3, 4})− rank(A) + 1 = 1 .

We see that the maximum over all the edge weights in T is one, which is the smallest possible

width over all branch-decompositions of A. Thus, the branch-width of A is one, and the tree

T is an optimal branch-decomposition of A. 2

3. Overview of the Cunningham-Geelen (CG) Algo-

rithm

Given a non-negative matrix A ∈ Zm×n
≥0 , the CG algorithm solves the integer program

max{cT x : Ax = b, x ≥ 0, x ∈ Zn} .

3

The algorithm takes four parameters as input: 1) a non-negative matrix A ∈ Zm×n, 2) a non-

negative vector b ∈ Zm, 3) the objective function c ∈ Zn, and 4) a branch-decomposition

(T, ν) of A with width k, and returns as output the optimal x ∈ Zn which maximizes

cT x. The algorithm solves this maximization problem in O((d + 1)2kmn + m2n) where

d = max{b1, . . . , bm}. We note that for classes of matrices with branch-decompositions

of constant width k, the CG algorithm runs pseudopolynomial -time, since the runtime is

polynomial in the numeric entries of b.

The CG algorithm runs by combining a depth-first search of the tree T with a dynamic

programming technique. We begin by defining the internal data structures used within the

algorithm, and then describe the algorithm itself. Let A′ = [A b] (the matrix A augmented

with the vector b), E = {1, . . . , n}, and E ′ = {1, . . . , n + 1}. For X ⊆ E, let

B(X) = { b′ ∈ Zm : i) 0 ≤ b′ ≤ b ,

ii) ∃z ∈ Z|X|, z ≥ 0 such that (A|X)z = b′, and

iii) b′ ∈ span(A′|(E ′ −X))
}

.

The integer program max{cT x : Ax = b, x ≥ 0, x ∈ Zn} is feasible if and only if b ∈ B(E).

Given a branch-decomposition (T, ν), there are particular sets X which can be calculated by

combining elements from previously constructed sets, i.e. T -branched sets. A set X ⊆ E is

T -branched if there is an edge e ∈ E(T) such that X is the label-set of one of the components

of T − e (for example, in Example 2.1, we see that X = {1, 2} is a T -branched set). Any T -

branched set X where |X| ≥ 2 can be partitioned into two smaller T -branched sets (X1, X2).

In this case, for X = (X1, X2),

B(
(X1, X2)

)
= { b′ ∈ Zm : i) 0 ≤ b′ ≤ b ,

ii) ∃b′1 ∈ B(X1) and b′2 ∈ B(X2) such that b′ = b′1 + b′2, and

iii) b′ ∈ span(A′|X) ∩ span
(
A′|(E ′ −X)

)}
.

Having defined T -branched sets and B(X), we can now describe the precise steps of the

CG algorithm. We determine the center of the tree, and then root the tree at its center

(subdividing an edge and creating a new node if necessary). We then walk the nodes of

the tree in post-depth-first-search order. Since the tree T is cubic, when considered in post-

depth-first-search order, every internal node has two children and a parent. Thus, every

T -branched set X where |X| ≥ 2 can be easily partitioned into two T -branched sets X1

4

**
Algorithm: Cunningham-Geelen Algorithm

Input: 1) A non-negative matrix A ∈ Zm×n,
2) A non-negative vector b ∈ Zm,
3) The objective function c ∈ Zn, and
4) A branch-decomposition (T, ν) of A with width k .

Output: 1) A vector x ∈ Zn such that cT x is maximized.
1 for each T -branched set X ⊆ E do
2 if |X| = 1 then
3 Calculate B(X)
4 else
5 Partition X into two smaller T -branched sets (X1, X2)
6 B(X) ← ∅
7 for each b′1 ∈ B(X1) and b′2 ∈ B(X2) do
8 b′ ← b′1 + b′2
9 if b′ ≤ b and b′ ∈ S(A′, X) then
10 B(X) ← B(X) ∪ b′

11 end if
12 end for
13 end if
14 end for
15 for all b ∈ B(E)
16 Find the maximum of cT x
17 end for
18 return optimal x
**

Figure 1: The pseudocode for the CG algorithm.

and X2 corresponding to the two children. Then, we simply take linear combinations of the

vectors in X1 and X2, such that the conditions for inclusion in B(X) are satisfied. When we

reach the root, we check all feasible solutions in B(E) and find the optimal according to the

maximum of the objective function. The pseudocode is given in Figure 1.

In terms of actually implementing the CG algorithm, it is easy to see that the performance

will be greatly affected by the method used in determining whether or not a given vector is

in the intersection of two vector subspaces (criteria (iii) for a vector b′ ∈ B(X)). In the next

section, we investigate several methods for answering that question, and display experimental

results.

4. Intersecting Two Vector Spaces

Let A ∈ Zm×n with m ≤ n. As above, let E := {1, . . . , n}, and given X ⊆ E, let A|X denote

the submatrix of A containing only the columns of X. Given X ⊆ E, let Y := E − X.

Then, for any partition (X, Y) of E, and let SX := span(A|X)∩ span(A|Y). The goal of this

5

section is to describe three different ways of determining whether or not a giving vector is

in SX . The first was described (with a few notational errors, and without a rigorous proof)

in [7], the second is a well-known numerical algorithm from [8] for finding the intersection of

two subspaces, and the third is a straight-forward application of properties of B(X). In this

section, we describe each of these methods, and then display a computational comparison.

The CG Intersection Method

The first algorithm for determining whether a giving vector v ∈ SX is from [7] (with correc-

tions). We will explicitly describe a matrix MX such that the column-span of MX is equal

to SX . For the purpose of clearly explaining the notation, we will continuously work on the

following example:

A =




1 0 0 0 1 7 6
0 1 0 0 4 7 1
0 0 1 0 4 2 1
0 0 0 1 6 6 4


 , X = {2, 4, 6, 7}, and A|X =




0 0 7 6
1 0 7 1
0 0 2 1
0 1 6 4


 .

Let AX := A|X, AY := A|Y , and let B ⊆ E be a basis of the column-span of A. For

example, in the matrix A given above, B = {1, 2, 3, 4}. Finally, given two matrices V and

W , with an equal number rows in each, denote the matrix [V W] as the matrix consisting

of all the columns and rows in both V and W . We can reorder the columns of AX and AY

such that AX := [A|(B ∩X) A|(X −B)] and AY := [A|(B ∩ Y) A|(Y −B)]. In the case of

A and X given as above,

AX =




0 0 7 6
1 0 7 1
0 0 2 1
0 1 6 4


 and AY =




1 0 1
0 0 4
0 1 4
0 0 6


 .

In our example, notice that the basis B is the standard basis, and the matrix A is already in

standard form (in other words, A = [I N]). By using elementary column operations (which

do not change the range of the column-span), we create the partially reduced matrices

red(AX) and red(AY) by cancelling the entries in the columns X − B (or Y − B) that

correspond to rows with non-zero entries in the columns X ∩ B (or Y ∩ B), respectively.

Notice that these partially reduced matrices are different from the standard reduced row

echelon form. For example,

red(AX) =




0 0 7 6
1 0 0 0
0 0 2 1
0 1 0 0


 and red(AY) =




1 0 0
0 0 4
0 1 0
0 0 6


 .

6

We claim that MX = [red(AX)|(X −B) red(AY)|(Y −B)]. In our running example,

MX =




7 6 0
0 0 4
2 1 0
0 0 6


 .

Notice that the dim(SX) = 3 and rank(MX) = 3 in our example. The following lemma

is a correction of claims in Section 3 of [7]. Following the notation of [7], note that given

U ⊆ B and V ⊆ E, A[U, V] denotes the submatrix of A with rows indexed by U and columns

indexed by V .

Lemma 4.1 For any partition (X, Y) of E,

λA(X) = rank
(
A[B − (X ∩B), X −B]

)
+ rank

(
A[B − (Y ∩B), Y −B]

)
+ 1 .

Moreover, SX is the column-span of the matrix

MX = [red(AX)|(X −B) red(AY)|(Y −B)] .

Proof: We must show that SX ⊆ span(MX) and span(MX) ⊆ SX . In the first case, consider

a vector v ∈ SX . Then v ∈ span(A|X) and v ∈ span
(
red(AX)

)
, and likewise, v ∈ span(A|Y)

and v ∈ span
(
red(AY)

)
. Thus, v can be written as a linear combination of columns in

red(AX) (i.e., v = red(AX)λ), and v can also be written as a linear combination of the

columns in red(AY) (i.e., v = red(AY)λ′).

We will construct a
(|X −B|+ |Y −B|)-length vector λ′′ using entries from both λ and

λ′. Set the first |X−B| entries in λ′′ to the last |X−B| entries in λ, and the second |Y −B|
entries in λ′′ to the last |Y −B| entries in λ′. Then, v = MXλ′′, and SX ⊆ span(MX).

Conversely, we must show that span(MX) ⊆ SX . Consider a vector v ∈ span(MX) such

that v = MXλ′′ for some λ′′. We will construct corresponding λ, λ′ such that v = red(AX)λ =

red(AY)λ′. Towards that end, set the first |X ∩B| entries in λ to the first |X ∩B| entries in

v, and the last |X − B| entries in λ to the first |X − B| entries in λ′′. To construct λ′, set

the first |Y ∩ B| entries in λ′ to the first |Y ∩ B| entries in v, and the last |Y − B| entries

in λ′ to the last |Y − B| entries in λ′′. Then, v = red(AX)λ = red(AY)λ′ as desired, and

span(MX) ⊆ SX .

Finally, we must show that

λA(X) = rank
(
A[B − (X ∩B), X −B]

)
+ rank

(
A[B − (Y ∩B), Y −B]

)
+ 1 .

7

Since it is well-known that λA(X) = dim(SX) + 1, it suffices to show that

dim(SX) = rank
(
A[B − (X ∩B), X −B]

)
+ rank

(
A[B − (Y ∩B), Y −B]

)
.

When we inspect the matrix MX (a basis for SX), we see that any two vectors from

the first (X − B) columns and from the last (Y − B) columns are linearly independent,

since the zero entries always appear in different rows. Thus, rank(MX) = rank
(
MX |(X −

B)
)

+ rank
(
MX |(Y − B)

)
. However, when the rows of zeros are removed, we see that the

rank
(
MX |(X −B)

)
= rank

(
A[B− (X ∩B), X −B]

)
and rank

(
MX |(Y −B)

)
= rank

(
A[B−

(Y ∩B), Y −B]
)
. Since the rank(MX) = dim(SX), this concludes our proof. 2

When the matrix A is not in standard form, we rewrite A as [AB N], and calculate the

matrix AB
−1 such that [AB N] · AB

−1 = [I N]. Then, whenever we wish to determine if a

given vector v ∈ SX , we test if AB
−1v ∈ span(A−1

B MX). We note that finding A−1
B is basically

a free computation within the algorithm for finding the maximal set of linearly independent

columns B. Finally, we note that the runtime analysis of the CG algorithm assumes that

this is the method used for all SX inclusion tests.

The Numerical Method

The second method is a well-known numerical algorithm for finding a basis for the intersec-

tion of two subspaces, and is described in detail in [8], Section 12.4.4 (pg. 604). To briefly

summarize, given A ∈ Rm×p and B ∈ Rm×q (with p ≥ q), we calculate the two QR factoriza-

tions A = QARA and B = QBRB, and then take the singular value decomposition of QT
AQT

B.

Using this singular value decomposition, we can explicitly write down a numerical basis of

span(A)∩ span(B). This algorithm requires approximately 4m(q2 +2p2)+2pq(m+ q)+12q3

flops, which is on the same order as the runtime of the CG intersection method O(m2n log m).

The span(Y) Method

Finally, we notice that if a given vector b′ is in B(X), by criteria (ii), this implies that there

exists a z ∈ Z|X| with z ≥ 0 such that AXz = b′. In other words, we already know that

b′ ∈ span(AX), and we only need to check if b′ ∈ span(AY). Since the matrix AY is easy to

construct (as compared to the computational complexity inherent in the other methods), it

is worthwhile to investigate how this simplified method behaves in practice.

8

Computational Results for Intersection Tests

We test these three intersection algorithms on randomly generated set partition instances

(see Section 5.3.2 for a complete description). These instances are infeasible. We denote

the three methods as CG (for the Cunningham-Geelen matrix construction algorithm), QR

(for the numerical, QR-factorization based algorithm) and finally, span(Y) (to denote we are

only checking the span(Y)).

rows columns CG QR span(Y)
50 250 17 6 3
100 250 80 28 5
150 250 77 51 11
200 250 7 13 6
250 250 1 15 4
100 500 488 142 29
200 500 2360 915 85
300 500 2381 1508 185
400 500 237 287 114
500 500 3 320 67
150 750 3565 1132 169
300 750 – – 513
450 750 – – 1057
600 750 – – 621
750 750 9 – 403
200 1000 – – 577
400 1000 – – 1723
600 1000 – – 3485

Table 1: Computational investigations on intersection algorithms.

In general, the span(Y) method is the most practical, and it will become the default

method for our computational investigations. However, we note that the CG intersection

method is extremely fast on square matrices. For example, on the 750 × 750 instance, the

CG method finishes in 9 secs, while the QR method does not terminate, and the span(Y)

method takes 403 secs. In Section 5.3.2, we investigate this discrepancy further, and propose

a class of square, infeasible set partition instances for testing with the CG algorithm based

on this result. The “–” signifies that the computation was terminated after four or five hours.

9

5. Computational Results for the CG Algorithm

In this section, we summarize the computational results for our implementation of the CG

method. We experimented with two different implementations (a low-memory version and

a memory-intensive version), and three different methods of computing the intersection SX

(previously described in Section 4). In Section 5.1, we describe the nuances of our imple-

mentation. In Section 5.2, we describe the different types of trees we used as input. In

Section 5.3, we describe our computational investigations on graph 3-coloring, set partition,

market split and knapsack instances. To summarize, the CG method was not successful

(as currently implemented) on the graph 3-coloring instances, partially successful on the

set partition instances, partially successful on the feasible knapsack instances, and very

successful on the infeasible market split and knapsack instances with width ≤ 6. For a par-

ticularly demonstrative example, the CG algorithm runs the infeasible knapsack instance

ex6 Original 10000.lp in 1188 ≈ 19.8 min while Gurobi runs in 13464 ≈ 3.74 hours.

5.1 Implementation Details

The two most significant challenges faced during the implementation of the CG algorithm

were the challenge of managing the memory of the B(X) sets, and the challenge of quickly

iterating the combinations. Towards managing the memory of the B(X) sets, we store only

a scalar/vector pair {α, b′}, where the vector b′ ∈ B(X), and the scalar α is the largest

multiplier such that αb′ ≤ b. In our memory-intensive implementation, given two sets of

scalar/vector pairs {α, b1}, {β, b2}, we compute b′ = α′b1 + β′b2, where 0 ≤ α′ ≤ α and

0 ≤ β′ ≤ β and determine whether or not b′ ∈ SX for each linear combination. In the low-

memory implementation, we rely on the following three observations. Given vectors v1, v2

and a vector space W ,

1. If v1, v2 ∈ span(W), then αv1 + βv2 ∈ span(W) .

2. If v1 ∈ span(W), but v2 /∈ span(W), then αv1 + βv2 /∈ span(W) .

3. If v1, v2 /∈ span(W), then αv1+βv2 may or may not be in span(W), and the combination

must be explicitly checked.

These observations allow us to significantly reduce the number of span computations, while

calculating a “generating set” of vectors for B(X). For example, when running the 4 × 30

10

market split instance (see Section 5.3.3 for a complete description), we see that the memory-

intensive implementation runs for over an hour while consuming 4 GB of RAM and 2 GB

of swap space before being killed remotely by the system. Additionally, the last B(X) set

calculated before the process was terminated contained 20,033,642 vectors. By contrast, the

low-memory version runs in 2.88 seconds, consumes under .1% of memory, and has a root

B(X) set consisting of only 30 vectors.

The drawback of the low-memory implementation is that we are no longer required to

only consider pairwise-linear combinations: we must also consider triples and quadruples,

etc., to ensure that we are not missing any essential vectors. This particular aspect of our

code has not been fully optimized. For example, on the 450×588 infeasible graph 3-coloring

instance (see Section 5.3.1 for a complete description), one of the B(X) sets contain over 200

vectors. This is trivial to manage for the memory-intensive implementation, and the code

terminates with the infeasible answer in 230 seconds. But iterating the
(
220
2

)
,
(
220
3

)
,
(
220
4

)
, etc.

combinations (24,090, 1,750,540 and 94,966,795, respectively) and computing the necessary

span checks runs overnight without finishing. Thus, as currently implemented, sometimes

the memory-intensive version is more efficient and sometimes, the low-memory version is

more efficient. In our experimental results, we will use both.

Finally, when iterating through the combinations at the root node of the branch-decomposition

tree, we must quickly determine if a given combination of scalar/vector pairs sums to the

vector b. Thus, we create a “hash” value for each vector (and for the vector b), which

is quickly computable and easily comparable. Through trial and error, we settled on the

following “hash” function:

hash(v) =
m∑

i=1

(i + 65599)vi .

Obviously, two different vectors can “hash” to the same value. In this case, we must do

a direct component-by-component comparison to determine if the given combination does

indeed sum to the vector b. However, the “hash” function often spares us the expensive direct

comparison. Furthermore, the “hash” function allows us to sort the vectors in increasing

value, which allows us to use binary search techniques to isolate combinations that sum to

the vector b.

11

5.2 Trees

The CG algorithm takes as input the normal parameters for an integer program (the matrix

A, right-hand side vector b and objective function c), but it also takes as input a branch-

decomposition (T, ν) of the matrix A. In our computational investigations, we often tested

the same integer program input with several different branch-decompositions. These trees

are optimal branch-decompositions, branch-decompositions derived heuristically, and “worst-

case” branch-decompositions. The optimal branch-decompositions were constructed via the

algorithm described in [10] with code provided by the author. However, we were unable to

obtain trees for many of our larger test cases, which is expected since finding an optimal

branch-decomposition is NP-hard [16, 11].

The heuristically-derived trees were computed via the algorithms described in [12] with

code provided by the authors. In [12], the authors describe two different methods for finding

near-optimal branch-decompositions of linear matroids, based on classification theory and

max-flow algorithms, respectively. The authors introduce a “measure” which compares the

“similarity” of elements of the linear matroid, which reforms the linear matroid into a simi-

larity graph. The method runs in O(n3) time, and is implemented in Matlab. All heuristic

trees used in our experiments were derived using the max-flow algorithm.

Finally, we experimented with “worst-case” caterpillar trees. A caterpillar tree is formed

by taking the n columns of a matrix and distributing them across the legs of a long tree such

that every interior node (with the exception of the two ends) is adjacent to a single leaf, and

the two end interior nodes are each adjacent to two leaves.

1

2 3 n-1

n

The width of a caterpillar tree may be the worst possible, since the columns are always

assigned to leaves in order 1 to n, regardless of the linear independence of the columns.

However, constructing such trees is fast and trivial, and as we will see in our experimental

investigations, surprising useful.

5.3 Experimental Results

We tested our code on several different types of problems: graph 3-coloring, set partition,

market split, and knapsack. We ran our instances on a dual-Core AMD Opteron processor

12

with 3 GZ clock speed, 4 GB of RAM and 2 GB of swap space. We tested our code against

Gurobi [3], which is well-known commercial software for solving integer programs (Gurobi

is considered competitive with Cplex on integer programming performance benchmarks

[13]).

5.3.1 Graph 3-coloring Instances

In this section, we describe the experimental results on a particular class of graph 3-coloring

instances. In this case, the CG algorithm was not competitive with Gurobi.

In [14], the authors describe a randomized algorithm based on the Hajós calculus for

generating infinitely large instances of quasi-regular, 4-critical graphs. When testing these

graphs for 3-colorability in [14], the authors experimented with numerous algorithms and

software platforms, but always found exponential growth in the runtime for larger and larger

instances. Based on these experimental observations, the authors propose these graphs as

“hard” examples of 3-colorability. When converted to an integer program, there are three

variables per vertex, xiR, xiG, xiB ∈ {0, 1} and three slack variables per edge sijR, sijG, sijB ∈
{0, 1}. There is one constraint per vertex xiR +xiG +xiB = 1, and three constraints per edge

xiR + xjR + sijR = 1 , xiG + xjG + sijG = 1 , and xiB + xjB + sijB = 1 .

Since these graphs are non-3-colorable, the corresponding integer programs are infeasible.

We include these examples in our benchmark suite because they are infeasible, because they

are purported to be hard for constraint-satisfaction software programs, and because the

max(bi) = 1. Since the runtime of the CG algorithm in general is O((d + 1)2kmn + m2n), in

this case, the runtime is O(22kmn + m2n). However, the CG algorithm is not competitive

with Gurobi on these instances because the width is still too high.

We tested these instances with the memory-intensive implementation, and we see widths

ranging from 22 to 158. The “–” signifies that the algorithm runs overnight without termi-

nating. We note that Gurobi is faster than the CG algorithm (as currently implemented)

on these instances. We next observe a surprising fact: the width of the caterpillar tree and

the heuristic tree are the same. Since we were unable to obtain an optimal tree for these

instances (84 columns is too large for the existing code), we do not know how close these

widths are to optimal. Furthermore, despite identical widths, the runtime of the CG algo-

rithm with the heuristic tree as compared to the caterpillar tree is dramatically different. For

example, on the 131×171 instance, although the width of both trees is 42, the heuristic tree

13

rows cols max(b)
cat

width sec
heuristic
width sec

gurobi
sec

64 84 1 22 36 22 0 0
131 171 1 42 – 42 2 1
195 255 1 62 – 62 5 0
255 333 1 80 – 80 10 1
450 588 1 140 – 140 – 16
510 666 1 158 – 158 – 112
652 852 1 – – – – 682
719 939 1 – – – – 1873
772 1008 1 – – – – 9676
836 1092 1 – – – – 16033

Table 2: Infeasible graph 3-coloring instances.

runs in 2 seconds, but the caterpillar tree does not terminate. We provide an explanation

for this discrepancy in Section 5.4.

5.3.2 Set Partition Instances

In this section, we describe the experimental results for randomly-generated infeasible in-

stances of set partition. Although the CG method is not generally competitive with Gurobi

here, we isolate a special class of square infeasible instances where the CG algorithm runs

twice as fast as Gurobi.

In the set partition problem, the A matrices are 0/1 matrices, and the right-hand side

vector b contains only ones. Thus, an instance of set partition is Ax = 1, where A(i, j) = 1 if

and only if the integer i appears in the set Mj. The instance is feasible if there is a collection

of sets Mi1 , . . . ,Mik such that the intersection of any two sets is empty, and the union is the

entire set of integers 1, . . . , m. These randomly-generated instances are infeasible, and were

generated with the Matlab command A = double(rand(m, n) > .20).

We tested these instances with the memory-intensive implementation, and we see widths

ranging from 1 to 302 on these instances. We note that Gurobi is faster than the CG

algorithm (as currently implemented) on these instances. We also see that although the

width of the caterpillar trees is similar to the width of the trees produced by the heuristic,

the runtime of the heuristic trees is significantly faster than the runtime of the caterpillar

trees (discussed in Section 5.4). We also note that the full-rank, square set partition instances

have branch-width one. We recall the results from the intersection testing in Table 1, which

demonstrate that the CG intersection method was significantly faster than the other methods

14

rows cols
cat

width sec
heuristic
width sec

gurobi
sec

50 250 51 6 51 4 0
100 250 101 28 98 4 1
150 250 102 27 94 8 0
200 250 52 9 52 7 1
250 250 2 9 2 10 0
100 500 101 143 101 45 2
200 500 201 908 185 55 4
300 500 202 749 202 107 1
400 500 102 166 102 130 2
500 500 2 177 2 177 2
150 750 151 1133 151 85 16
300 750 301 7094 299 317 16
450 750 302 5846 302 735 3
600 750 102 1168 152 842 6
750 750 2 1547 2 1104 7

Table 3: Randomly-generated infeasible set partition instances.

on square, full-rank matrices. It is therefore logical to combine instances with minimal

branch-width and minimal right-hand side entries, and our next test is square, infeasible set

partition instances and the CG method for testing the intersection.

rows cols
cat

width sec
gurobi
sec

250 250 2 0 2
1000 1000 2 23 46
1500 1500 2 80 154
2000 2000 2 190 570
2500 2500 2 372 1047
3000 3000 2 858 2024
3500 3500 2 1063 3226
4000 4000 2 1528 4900
4500 4500 2 2588 6960
5000 5000 2 3378 9589
5500 5500 2 5208 12626

Table 4: Randomly-generated square infeasible set partition instances.

The strength of the CG algorithm is shown in Table 4: the method is twice as fast as

Gurobi on these low branch-width, low right-hand side examples.

15

5.3.3 Market Split: Cornuéjols-Dawande Instances

In this section, we describe the experimental results for the market-split instances, where we

see that the CG method is competitive with Gurobi for widths ≤ 6.

The following instances are the Cornuéjols-Dawande market split problems (see [1] and

references therein). In this case, the matrix A is m × 10(m − 1) with entries drawn uni-

formally at random from the interval [1, 99]. The right-hand side vector b is defined as

bi = b1
2

∑n
j=1 aijc. These instances are infeasible, and we tested with the low-memory ver-

sion of the CG algorithm.

rows cols max(b)
cat

width sec
heuristic
width sec

opt

width sec
gurobi
sec

2 10 278 3 0 3 0 3 0 0
3 20 572 4 1 4 0 4 0 3
4 30 941 5 2 5 3 5 2 37
5 40 1067 6 1885 6 1900 6 * 2235
6 50 1264 7 – 7 – 7 – 5631

Table 5: Infeasible market split instances.

In this case, we see that the CG method is significantly faster than Gurobi on instances

with relatively small widths (≤ 6), but that Gurobi scales better with instance size. For

example, while the CG method runs twice as fast as Gurobi on the market split 5 × 40

instance, on the 6 × 50 instance, the CG method ran overnight without terminating while

Gurobi simply doubled in time. We note that we were unable to obtain an optimal tree for

the 5× 40 instance, which is why a “*” appears, rather than the customary non-termination

“–”.

5.3.4 Knapsack Instances

In this section, we describe the experimental results for knapsack instances, where we see

that the CG method is significantly faster than Gurobi on the infeasible instances.

A “knapsack” problem is a “packing” problem represented by Ax = b, where x ∈ {0, 1},
the matrix A consists of a single row, and the variables xi are items that can be “packed”

or “left behind”. Thus, the coordinate A1i represents the weight of the item xi, and b (a

single integer) represents the total weight that can be carried in the “knapsack”. In [15],

the authors describe hard, infeasible knapsack instances (posted online at http://www.unc.

edu/~pataki/instances/marketshare.htm). In these infeasible knapsack instances, the

16

matrices A are 5 × 40, which implies that these are multiple-knapsack problems, i.e., the

goal is to use 40 items to pack 5 knapsacks. If an item appears in one knapsack, it must

appear in all knapsacks.

To be thorough, we test both feasible and infeasible knapsack instances. The low-memory

version of the CG algorithm is always used. While Gurobi is faster than CG on the feasible

instances, CG is significantly faster than Gurobi on the infeasible knapsack instances. To

construct a feasible instance, we remove three rows from each of the 5× 40 Pataki matrices,

which allows these instances to become feasible. The computational results from these

constructed feasible knapsack instances are described below in Table 6.

name rows cols max(b)
row
set

cat
width sec

gurobi
sec

ex1 Original 10000.lp 2 40 101,368 {1, 2} 3 2792 534
ex2 Original 10000.lp 2 40 110,947 {1, 2} 3 1676 144
ex3 Original 10000.lp 2 40 119,606 {1, 4} 3 1658 < 15848
ex4 Original 10000.lp 2 40 95,708 {1, 4} 3 2599 1491
ex5 Original 10000.lp 2 40 104,334 {1, 2} 3 2207 1321

Table 6: Feasible knapsack instances created from infeasible instances in [15].

Although Gurobi is almost always faster than the CG algorithm on these instances,

the behavior of Gurobi on the Pataki example ex3 Original 10000.lp (with rows one

and four removed) is worth noting. While the CG algorithm terminated with an optimal

solution in 3325 sec ≈ 55 min, we could not run Gurobi to termination on our machine.

Indeed, after over 15848 sec ≈ 4.5 hours, Gurobi used up 4 GB of RAM and 2 GB of swap

space on our machine and the process was killed remotely by the system.

In Table 7, we see the computational results for the infeasible Pataki knapsack instances.

In these instances, the strength of the CG algorithm is truly shown: the CG method

runs in minutes, whereas Gurobi runs in hours. However, we note that, in each of these

knapsack instances, both feasible and infeasible, the width of the trees is equal to the rank of

the matrix plus one. Thus, these trees do not allow the CG method to filter out any excess

vectors. However, in the infeasible case, because the width of these trees is comparatively low

(≤ 6), the CG method is significantly faster than the more traditional integer programming

methods of Gurobi.

17

name rows cols max(b)
heuristic
width CG sec gurobi sec

ex1 Original 10000.lp 5 40 112,648 6 534 ≈ 8.9 min 4969 ≈ 1.38 hour
ex2 Original 10000.lp 5 40 110,947 6 1681 ≈ 28 min 11257 ≈ 3.13 hour
ex3 Original 10000.lp 5 40 119,606 6 343 ≈ 5.7 min 4122 ≈ 1.15 hour
ex4 Original 10000.lp 5 40 116,946 6 1880 ≈ 31.3 min 10388 ≈ 2.89 hour
ex5 Original 10000.lp 5 40 104,334 6 2644 ≈ 44 min 4570 ≈ 1.23 hour
ex6 Original 10000.lp 5 40 108,565 6 1188 ≈ 19.8 min 13464 ≈ 3.74 hour
ex7 Original 10000.lp 5 40 105,870 6 1340 ≈ 23 min 4819 ≈ 1.34 hour
ex8 Original 10000.lp 5 40 106,495 6 925 ≈ 15 min 10085 ≈ 2.8 hour
ex9 Original 10000.lp 5 40 112,366 6 1969 ≈ 32 min 11584 ≈ 3.22 hour
ex10 Original 10000.lp 5 40 102,170 6 2189 ≈ 36 min 6140 ≈ 1.71 hour

Table 7: Infeasible knapsack instances from [15].

5.4 Branch-decompositions and Edge-weight Dispersion

In Sections 5.3.1 and 5.3.2, we investigated the behavior of the CG algorithm on graph 3-

coloring and set partition instances. In both cases, we observed that, although the width of

the heuristic and caterpillar trees was virtually identical, the runtime of the CG algorithm

on the heuristic trees was significantly faster than the runtime on the caterpillar trees.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90
Comparing Branch Decomposition Edge Distributions

edge weights

of

 e
dg

es

cat
heur

Figure 2: Distribution of edge weights between caterpillar and heuristic trees.

In Figure 2, we compare the edge weight distribution of a caterpillar and a heuristic

tree on the first MUG instance (the matrix has size 64 × 84, and both trees have width

18

22). We see that the number of edges with larger edge weights is significantly higher in the

caterpillar tree than in the heuristic tree. For example, we see that there are 45 edges with

edge weight 21 in the caterpillar tree, and only 7 edges with edge weight 21 in the heuristic

tree. While both trees have 84 edges with edge weight 1, the heuristic tree has 19 edges

with weight 2, and the caterpillar tree has only 2 edges with weight 2. Thus, we can see the

performance increase on the heuristic tree is not due to a difference in width, but rather due

to the fact that there are significantly more edges with less weight in the heuristic tree. This

observation should encourage research into branch-decomposition heuristics that emphasize

equal focus on both lower widths and less edges with larger weights.

6. Conclusion

In this paper, we demonstrate a specific niche for the CG algorithm. On infeasible market

split and knapsack problems with branch-width ≤ 6, the CG algorithm runs in minutes

while the commercial software Gurobi [3] runs on the order of hours. Additionally, on one

particular feasible knapsack instance, the low-memory implementation of the CG algorithm

finds an optimal solution in under an hour, while Gurobi runs for several hours, consumes

4 GB of RAM and 2 GB of swap space, before being killed remotely by the system. Finally,

we demonstrate that the CG algorithms runs almost twice as fast as Gurobi on a particular

class of square, infeasible set partition instances.

For future work, we intend to continue optimizing the low-memory implementation and

researching faster methods of calculating the intersection SX . Additionally, searching for

problems that are hard for Gurobi and yet have low enough branch-width to be practical

with the CG algorithm will be an active area of interest. Finally, the CG algorithm readily

lends itself to parallelization in a way that the simplex algorithm does not. This will the

first priority for our next investigation.

Acknowledgements

The authors would like to thank Mark Embree for his support and feedback on this project,

and also Jon Lee for facilitating use of the IBM Yellowzone machines. Finally, we acknowl-

edge the support of NSF DMS-0729251, NSF-CMMI-0926618 and DMS-0240058.

19

References

[1] K. Aardal, R. E. Bixby, C. A. J. Hurkens, A. K. Lenstra, and J. W. Smeltink. Market

split and basis reduction: Towards a solution of the Cornuéjols-Dawande instances.

Lecture Notes in Computer Science, 1610:1–16, 1999.

[2] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs.

Journal of Algorithms, 12:308–340, 1991.

[3] R. Bixby, Z. Gu, and E. Rothberg. Gurobi optimization. Available at

http://gurobi.com.

[4] W. Cook and P.D. Seymour. An algorithm for the ring-routing problem. Bellcore

technical memorandum, 1994.

[5] W. Cook and P.D. Seymour. Tour merging via branch-decomposition. INFORMS

Journal on Computing, 15(3):233–248, 2003.

[6] B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite

graphs. Information and Computation, 85:12–75, 1990.

[7] W.H. Cunningham and J. Geelen. On integer programming and the branch-width of

the constraint matrix. Lecture Notes in Computer Science, 4513:158–166, 2007.

[8] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press,

Baltimore and London, 3rd edition, 1996.

[9] I.V. Hicks. Branch decompositions and minor containment. Networks, 43:1–9, 2004.

[10] I.V. Hicks. Graphs, branchwidth, and tangles! Oh my! Networks, 45:55–60, 2005.

[11] I.V. Hicks and N. McMurray. The branchwidth of graphs and their cycle matroids.

Journal of Combinatorial Theory Series B, 97:681–692, 2007.

[12] J. Ma, S. Margulies, I.V. Hicks, and E. Goins. Branch-decomposition heuristics for

linear matroids. Manuscript in preparation.

[13] H. Mittelmann. Mixed integer linear programming benchmark (parallel codes). Avail-

able at http://plato.asu.edu/ftp/milpc.html.

20

[14] K. Mizuno and S. Nishihara. Constructive generation of very hard 3-colorability in-

stances. Discrete Applied Mathematics, 156(2):218–229, 2008.

[15] G. Pataki, M. Tural, and E. B. Wong. Basis reduction and the complexity of branch-and-

bound. In SODA ’10 Proceedings of the Twenty-First Annual ACM-SIAM Symposium

on Discrete Algorithms. SODA, 2010.

[16] P.D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,

14(2):217–241, 1994.

21

